9514 1404 393
Answer:
1.114 kg/m³
Explanation:
The total mass of the air in the balloon and the balloon + cargo will be the mass of the displaced air. If d is the density of the air in the balloon, then we have ...
2910d +308 = 2910×1.22
Solving for d, we find ...
2910d = 2919(1.22) -308
d = 1.22 -308/2910
d ≈ 1.114 . . . kg/m³
The density of the hot air is about 1.114 kg/m³.
Answer:
-100N
Explanation:
Newton's third law of motion states that to every force exerted on one body, there is an equal and opposite force. This means that if object A exerts an ACTION force on B, there is a force called REACTION FORCE, which is equal and opposite, exerted on A by B.
The action and reaction forces are equal in size/magnitude but opposite in direction. In this case where a tennis racket strikes a tennis ball with a force (action force) of 100N, the ball will strike the racket with a reaction force of -100N.
F(RB) = -F(BR)
Answer:
Nitrogen and oxygen are by far the most common; dry air is composed of about 78% nitrogen (N2) and about 21% oxygen (O2). Argon, carbon dioxide (CO2), and many other gases are also present in much lower amounts; each makes up less than 1% of the atmosphere's mixture of gases.
Answer:
166 W
Explanation:
Power is the rate at which work is done.

The work done by Jill is the product of the weight of the pail and the height it moves.
The weight is the product of the mass and acceleration of gravity, <em>g</em>. Taking <em>g</em> as 9.81 m/s², the weight is
<em>W</em> = (6.90 kg)(9.81 m/s²) = 67.689 N
Work done = (67.689 N)(27.0 m) = 1827.603 J
Power = (1827.603 J) ÷ (11.0 s) = 166 W