Answer: 1.04N
Explanation:
Given
q1 = 2*10^-6C
q2 = 3.6*10^-6C
r = 0.25m
k = 9*10^9
Magnitude of electrostatic force can be calculated by using coulomb's law. Coulomb's law states that, "the magnitude of the electrostatic force of attraction or repulsion between two point charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them."
F =(kq1q2) / r²
F = (9*10^9 * 2*10^-6 * 3.6*10^-6) / 0.25²
F = 0.0648/0.0625
F = 1.04N
The type of electrostatic force between the charges is the repulsive force
<span>i believe the answer is
D. Wool is an excellent thermal insulator because heat flows through it very slowly.</span>
The synapse is actually the link between 2 neurons. Now when
an action potential contacts the synaptic knob of a neuron, the voltage-gate
calcium channels are unlocked, resulting in an influx of positively charged
calcium ions into the cell. This makes the vesicles containing
neurotransmitters, for example acetylcholine, to travel towards the
pre-synaptic membrane. When the vesicle arrives at the membrane, the contents
are released into the synaptic cleft by exocytosis. Neurotransmitters disperse
across the space, down to its concentration gradient, up until it reaches the
post-synaptic membrane, where it connects to the correct neuroreceptors. Connecting
to the neuroreceptors results in depolarisation in the post-syanaptic neuron as
voltage-gated sodium channels are also opened, and the positively charged
sodium ions travel into the cell. When adequate neurotransmitters bind to
neuroreceptors, the post-synaptic membrane overcame the threshold level of
depolarisation and an action potential is made and the impulse is transmitted.
<span>it fairly is going to attain a speed of 24 m/s in a 2d, yet between t = 0 and t = a million, it fairly is not any longer vacationing at that speed, yet at slower speeds. it fairly is 12 meters. ?D = [ ( a?T^2 + 2?Tv_i ) ] / 2 the place: ?D = displacement a = acceleration ?T = elapsed time v_i = preliminary speed ?D = [ ( 24m/s^2 • 1s • 1s + 2 • 1s • 0m/s ) ] / 2 ?D = 24 / 2 ?D = 12m</span>
Answer:

Explanation:
The ball will rise decreasing its speed until it reaches the highest point where its speed will be zero. From this point the tennis ball will begin to fall again, in the free fall the tennis ball will gain speed but now in the opposite direction. When it returns to the same point where it was launched, its speed will be the same as the one that was launched but with the opposite sign.

We can check this using the equation:

where 
ang h is the height, but because the ball returns to the same point where it started, h =0
then


the initial and final velocity will be the same in number, but we know that the ball is going in the opposite direction, so the final velocity must have the opposite sign from the initial velocity
so if
,
