Answer:
0.1g to 0.0000001g hope it helps uu
Answer:
Explanation:
We shall apply Doppler's effect of sound .
speaker is the source , Jason is the observer . Source is moving at 10 m /s , observer is moving at 6 m/s .
apparent frequency = 
V is velocity of sound , v₀ is velocity of observer and v_s is velocity of source and f_o is real frequency of source .
Here V = 340 m/s , v₀ is 6 m/s , v_s is 10 m/s . f_o = f
apparent frequency = 
= 
So m = 346 , n = 330 .
Explanation:
We need to calculate the speed of light in each materials
(I). Gallium phosphide,
The index of refraction of Gallium phosphide is 3.50
Using formula of speed of light
....(I)
Where,
= index of refraction
c = speed of light
Put the value into the formula


(II) Carbon disulfide,
The index of refraction of Gallium phosphide is 1.63
Put the value in the equation (I)


(III). Benzene,
The index of refraction of Gallium phosphide is 1.50
Put the value in the equation (I)


Hence, This is the required solution.
The correct answer to the question is : B) The weight of the water, and C) The height of the water.
EXPLANATION :
Before coming into any conclusion, first we have to understand potential energy of a body.
The potential energy of a body due to its position from ground is known as gravitational potential energy.
The gravitational potential energy is calculated as -
Potential energy P.E = mgh
Here, m is the mass of the body, and g is the acceleration due to gravity.
h stands for the height of the body from the ground.
We know that weight of a body is equal to the product of mass with acceleration due to gravity.
Hence, weight W = mg
Hence, potential energy is written as P.E = weight × height.
Hence, potential energy depends on the weight and height of the water.