Answer:
A) Object A is 3.25 times hotter.
B) Object A radiates 111.6 times more energy per unit of area.
Explanation:
Wiens's law states that there is an inverse relationship between the wavelength in which there is a peak in the emission of a black body and its temperature, mathematically,
,
where
is the temperature in kelvins and,
is the wavelenght (in meters) where the emission is in its peak.
From here, if we solve Wien's law for the temperature we get
.
Now, we can easily compute the temperatures.
For object A:

.
For object B:


From this, we get that
,
which means that object A is 3.25 times hotter.
Stefan's Law states that a black body emits thermal radiation with power proportional to the fourth power of its temperature.
This is
,
where
is call the Stefan-Boltzmann constant.
From this, power can be easily compute:
,
and we can notice that
,
which means that object A radiates 111.6 time more energy per unit of area.
The maximum speed is 0.55 m/s
Explanation:
For an object in uniform circular motion, the force of friction between the object and the ground provides the centripetal force required to keep the body in motion. Therefore we can write:

where the term on the left is the frictional force and the term on the right is the centripetal force, and where
is the coefficient of static friction
m is the mass of the body
g is the gravitational acceleration
v is the speed of the body
r is the radius of the circular path
In this problem, we have:

r = 0.102 m

Substituting and re-arranging, we find the maximum speed v at which the salt shaker can rotate:

Learn more about circular motion:
brainly.com/question/2562955
brainly.com/question/6372960
#LearnwithBrainly
Answer:
radial acceleration is 41.8 m / s²
Explanation:
The acceleration for circular motion is
a = v² / r
They also give us the X and Y position where the body falls when the rope breaks, let's write the projectile launch equations
x = vox t
y = v₀ₓ t - ½ g t2
Since the circle is horizontally the v₀ₓ is zero (v₀ₓ = 0)
x = v₀ₓ t
t = x / v₀ₓ
y = - ½ g t²
Let's replace and calculate the initial velocity on the X axis
y = - ½ g (x / vox)²
v₀ₓ = √ (g x² / 2 y)
v₀ₓ = √ [- (-9.8) 1.6² / (2 1.00)]
v₀ₓ = 3.54 m / s
This is the horizontal velocity, but since it circle is in horizontal position it is also the velocity of the body at the point of rupture.
Now we can calculate the radial acceleration
a = v² / r
a = 3.54² / 0.300
a = 41.8 m / s²
Answer:
Explanation:
Moving a magnet might cause a change in the magnetic field going through the solenoid. Whether or not it will change depends on the movement.
According to Faraday's law of induction a voltage is induced in a coil by a change in the magnetic flux. Magnetic flux is defined as the dot product of the magnetic field (a vector field) by the area enclosed by a loop of the coil.

The voltage is induced by the variation of the magnetic flux:

Where
ε: electromotive fore
N: number of turns in the coil
ΦB: magnetic flux
Moving the magnet faster would increase the rare of change of the magnetic flux, resulting in higher induced voltage.
Turning the magnet upside down would invert the direction of the magnetic field, reversing the voltage induced.
Answer:
The oven has many different heat sources from the bottom, sides, top, etc...
The microwave only has the sides.