Answer:
F = 183.153 N
Explanation:
given,
mass of the toothpick = 0.12 g = 0.00012 kg
initial velocity = 227 m/s
final velocity = 0 m/s
penetration depth = 16 mm = 0.016 m
using the equation of motion
v² - u² = 2 a s
0 - u² = 2 a s
- 221² = 2 × a × 0.016
a = 1526281.25 m/s²
Force is equal to
F = m a
= 0.00012 × 1526281.25
F = 183.153 N
amnesia is the most common illness used in tv an films
To calculate the velocity of the sound wave, we use this formula:
V = 331 + [0.6*T],
Where V is the velocity and T represents temperature.
When the temperature is 36 degree Celsius, we have
V = 331 + [0.6 * 36]
V = 331 + 21.6 = 352.6
Therefore, V = 352.6 m/s.
To develop this problem it is necessary to apply the optical concepts related to the phase difference between two or more materials.
By definition we know that the phase between two light waves that are traveling on different materials (in this case also two) is given by the equation

Where
L = Thickness
n = Index of refraction of each material
Wavelength
Our values are given as





Replacing our values at the previous equation we have




Therefore the thickness of the mica is 6.64μm
Answer:
Speed at which it will reach the ground is given as

Total time for which it will remain in air is given as
t = 6.3 s
Explanation:
As we know that the object is projected upwards with speed


now when it will reach the ground then we have

so we have


so we have

Now speed of the object when it reaches the ground is given as


