Answer:
Theoretical yield of the reaction = 34 g
Excess reactant is hydrogen
Limiting reactant is nitrogen
Explanation:
Given there is 100 g of nitrogen and 100 g of hydrogen
Number of moles of nitrogen = 100 ÷ 28 = 3·57
Number of moles of hydrogen = 100 ÷ 2 = 50
Reaction between nitrogen and hydrogen yields ammonia according to the following chemical equation
N2 + 3H2 → 2NH3
From the above chemical equation for every mole of nitrogen that reacts, 3 moles of hydrogen will be required and 2 moles of ammonia will be formed
Now we have 3·57 moles of nitrogen and therefore we require 3 × 3·57 moles of hydrogen
⇒ We require 10·71 moles of hydrogen
But we have 50 moles of hydrogen
∴ Limiting reactant is nitrogen and excess reactant is hydrogen
From the balanced chemical equation the yield will be 2 × 3·57 moles of ammonia
Molecular weight of ammonia = 17 g
∴ Theoretical yield of the reaction = 2 × 3·57 × 17 = 121·38 g
Answer: 1:4.69
Explanation:
The ratio can be expressed as:
Ua/Ub= √(Mb/Ma)
Where Ua/Ub is the ratio of velocity of hydrogen to carbon dioxide and Ma is the molecular mass of hydrogen gas= 2
Mb is the molecular mass of CO2 = 44
Therefore
Ua/Ub= √(44/2)
Ua/Ub = 4.69
Therefore the ratio of velocity of hydrogen gas to carbon dioxide = 1:4.69
which implies hydogen is about 4.69 times faster than carbon dioxide.
Balancing redox reactions:
Oxygen should be balanced by adding
as needed, while hydrogen should be balanced by adding
.
What is a redox reaction?
Redox reactions, also known as oxidation-reduction reactions, involve the simultaneous oxidation and reduction of two different reactants.
The Half-Equation Method is one technique used to balance redox processes. The equation is divided into two half-equations using this technique: one for oxidation and one for reduction.
By changing the coefficients and adding
,
, and
in that order, each reaction is brought into equilibrium:
- By putting the right number of water (
) molecules on the other side of the equation, the oxygen atoms are brought into balance. - By adding
ions to the opposing side of the equation, one can balance the hydrogen atoms (including those added in step 2 to balance the oxygen atom). - Total the fees for each side. Add enough electrons (
) to the more positive side to make them equal. (As a general rule,
and
are nearly always on the same side.) - The
on either side must be made equal; if not, they must be multiplied by the lowest common multiple (LCM) in order to make them equal. - One balanced equation is created by adding the two half-equations and canceling out the electrons. Additionally, common terms should be eliminated.
- Now that the equation has been verified, it can be balanced.
Learn more about redox reaction here,
brainly.com/question/20068208
#SPJ4
Gravity increases as the mass of either object increases.
<h3>What is gravity?</h3>
Gravity is the force by which a planet or other body draws objects toward its centre. The force of gravity keeps all of the planets in orbit around the sun.
Since the gravitational force is directly proportional to the mass of both interacting objects, more massive objects will attract each other with a greater gravitational force. So as the mass of either object increases, the force of gravitational attraction between them also increases.
Learn more about the gravity here:
brainly.com/question/4014727
#SPJ1
Answer:
The oxidation state of N in the KNO3 is +5
Explanation:
Oxidation rules:
1. Oxygen is -2, unless in peroxides.
2. Group 1 metals = +1
3. Group 2 metals = +2
4. If the molecule is neutral, all of the oxidation numbers have to add up to zero.
5. If the molecule is charged, all of the oxidation numbers have to add up to the charge of the molecule.
So, the given formula represents the salt compound formula unit of potassium nitrate: KNO3
The formula unit is uncharged.
From our rules, we know that,
O = -2
And we can find K on the periodic table, in the first group, thus giving it a +1 charge. Now let's put it all together.
K = +1
N = x
O = -2
Let's take into account the number of atoms of each element we have and make an equation since we know everything has to add up to zero since the molecules are neutral.
+1 +x+3 (-2) = 0 (notice we multiplied 3 by -2 because in the formula we have 3 atoms of oxygen with -2 charge each)
x - 5 = 0
x = 5
Therefore, the oxidation number of N in KNO3 is +5.