In my opinion, i think the first one is the best one since we're cutting down on paper wasted in mails when its better to do it online.
"paying bills online instead of sending paper through mail"
Don’t trust those links they usually pull up your IP
Answer:
a) The electric field at that point is
newtons per coulomb.
b) The electric force is
newtons.
Explanation:
a) Let suppose that electric field is uniform, then the following electric field can be applied:
(1)
Where:
- Electric field, measured in newtons per coulomb.
- Electric force, measured in newtons.
- Electric charge, measured in coulombs.
If we know that
and
, then the electric field at that point is:


The electric field at that point is
newtons per coulomb.
b) If we know that
and
, then the electric force is:



The electric force is
newtons.
Answer:
145 m
Explanation:
Given:
Wavelength (λ) = 2.9 m
we know,
c = f × λ
where,
c = speed of light ; 3.0 x 10⁸ m/s
f = frequency
thus,

substituting the values in the equation we get,

f = 1.03 x 10⁸Hz
Now,
The time period (T) = 
or
T =
= 9.6 x 10⁻⁹ seconds
thus,
the time interval of one pulse = 100T = 9.6 x 10⁻⁷ s
Time between pulses = (100T×10) = 9.6 x 10⁻⁶ s
Now,
For radar to detect the object the pulse must hit the object and come back to the detector.
Hence, the shortest distance will be half the distance travelled by the pulse back and forth.
Distance = speed × time = 3 x 10^8 m/s × 9.6 x 10⁻⁷ s) = 290 m {Back and forth}
Thus, the minimum distance to target =
= 145 m
-- The resistance of the heater is (volts/current) = 5 ohms
-- The heating (RMS) value of a sinusoidal AC is V(peak)/√2 . For this particular alternator, V(peak)=100V, so the heating (RMS) equivalent is 70.71 V.
-- The heating power delivered to the electric heater is (E²/R).
Power = (100/√2)² / 5
Power = 5,000 / 5
<u>Power = 1,000 watts </u>