Answer:
4 seconds
Explanation:
Given:
v₀ = 0 m/s
v = 20 m/s
a = 5 m/s²
Find: t
v = at + v₀
20 m/s = (5 m/s²) t + 0 m/s
t = 4 s
Given:
Inductance, L = 150 mH
Capacitance, C = 5.00 mF
= 240 V
frequency, f = 50Hz
= 100 mA
Solution:
To calculate the parameters of the given circuit series RLC circuit:
angular frequency,
= 
a). Inductive reactance,
is given by:

b). The capacitive reactance,
is given by:

c). Impedance, Z = 

d). Resistance, R is given by:



e). Phase angle between current and the generator voltage is given by:




Answer:
a) P = 807.85 N, b) P = 392.15 N, c) P = 444.12 N
Explanation:
For this exercise, let's use Newton's second law, let's set a reference frame with the x-axis parallel to the plane and the direction rising as positive, and the y-axis perpendicular to the plane.
Let's use trigonometry to break down the weight
sin θ = Wₓ / W
cos θ = W_y / W
Wₓ = W sin θ
W_y = W cos θ
Wₓ = 1200 sin 30 = 600 N
W_y = 1200 cos 30 = 1039.23 N
Y axis
N- W_y = 0
N = W_y = 1039.23 N
Remember that the friction force always opposes the movement
a) in this case, the system will begin to move upwards, which is why friction is static
P -Wₓ -fr = 0
P = Wₓ + fr
as the system is moving the friction coefficient is dynamic
fr = μ N
fr = 0.20 1039.23
fr = 207.85 N
we substitute
P = 600+ 207.85
P = 807.85 N
b) to avoid downward movement implies that the system is stopped, therefore the friction coefficient is static
P + fr -Wx = 0
fr = μ N
fr = 0.20 1039.23
fr = 207.85 N
we substitute
P = Wₓ -fr
P = 600 - 207,846
P = 392.15 N
c) as the movement is continuous, the friction coefficient is dynamic
P - Wₓ + fr = 0
P = Wₓ - fr
fr = 0.15 1039.23
fr = 155.88 N
P = 600 - 155.88
P = 444.12 N
It is the last number minus 3