Answer:
The answer to your question is SO₂ + 3H₂ ⇒ H₂S + 2H₂O
Explanation:
Reaction
SO₂ + H₂ ⇒ H₂S + H₂O
Reactants Elements Products
1 Sulfur 1
2 Hydrogen 4
2 Oxygen 1
This reaction is unbalanced so we need to balance it.
SO₂ + 3H₂ ⇒ H₂S + 2H₂O
Reactants Elements Products
1 Sulfur 1
6 Hydrogen 6
2 Oxygen 2
Now, the reaction is balanced
Answer:
Gas
Increase the pressure
Explanation:
Let's refer to the attached phase diagram for CO₂ (not to scale).
<em>At -57 °C and 1 atm, carbon dioxide is in which phase?</em>
If we look at the intersection between -57°C and 1 atm, we can see that CO₂ is in the gas phase.
<em>At 10°C and 2 atm carbon dioxide is in the gas phase. From these conditions, how could the gaseous CO₂ be converted into liquid CO₂?</em>
Since at 10°C and 2 atm carbon dioxide is below the triple point, the only way to convert it into liquid is by increasing the pressure (moving up in the vertical direction).
Water molecules move througout the solute
Answer:
Total number of ATP molecules generated from a 32-carbon fatty acid = 206 ATP molecules
Explanation:
A 32 carbon fatty acid which undergoes complete beta-oxidation assuming that the fatty acid is fully saturated will pass through the beta-oxidation cycle 14 times to produce the following:
15 molecules of acetylCoA, 14 molecules of FADH₂, and 14 molecules of NADH.
Each of the 15 acetylCoA molecules can be further oxidized in the citric acid cycle to yield the following: 15 × 3 NADH; 15 × 1 FADH₂, and 15 ATP molecules from the substrate level phosphorylation occuring at the succinylCoA synthetase catalyzed-reaction.
Total FADH₂ produced = 15 + 14 = 29 molecules of FADH₂
Total NADH produced = 45 + 14 = 59 molecules of NADH
The FADH₂ and NADH will each donate a pair of electrons to the electron transfer flavoprotein and mitochondrial NADH dehydrogenase respectively of the electron transport chain, and about 1.5 and 2.5 molecules of ATP are generated respectively when these electrons are transfered to molecular oxygen.
Thus, number of molecules of ATP generated by 29 molecules of FADH₂ = 1.5 × 29 = 43.5 molecules of ATP.
Number of molecules of ATP generated by 59 molecules of NADH = 2.5 × 59 = 147.5
Sum of ATP generated from FADH₂ and NADH = 43.5 + 147.5 = 191 ATP molecules
Total number of ATP molecules generated = 191 + 15 = 206 ATP molecules
Total number of ATP molecules generated from a 32-carbon fatty acid = 206 ATP molecules