The speed of sound is greater in ice (4000 m/s), then in water (1500 m/s), then in air (340 m/s). The explanation for this is the differente state of the matter in the three cases.
In fact, sound waves travel faster in solids (like ice), then in liquids (like water), then in gases (like air). This is because the speed of the sound wave depends on the density of the medium: the greater the density, the faster the sound wave. This can be easily understood by thinking at how a sound wave propagates: a sound wave is a vibration of molecules, which is transmitted throughout the medium by collision of the molecules. Therefore, the smaller the spacing between the molecules (such as in solids), the more efficient is the propagation, and so the sound wave is faster. On the contrary, there is a large spacing between molecules in gases (such as in the air), so there are less collisions between the molecules and so the wave is not transmitted efficiently, and so it has less velocity.
Answer:
When object is placed between the focus (F) and pole (P) of a concave mirror, magnified and erect image of the object is formed on the back of the mirror.
When object is placed between the centre of curvature and the principal focus of a concave mirror, magnified and inverted image is formed in front of the mirror.
Explanation:
Answer:
it will be 1/√2 of its original period.
Explanation:
Explanation:
(a) The given figure is a convex lens.
(b) In this figure, the object is placed between F and optical center of a lens. Convex lens is a converging lens. It converges the beam of light falling on it after reflection. The image is formed on the same side of the lens as the object.
The formed image is enlarged and it is virtual and erect.
(i) Type : virtual
(ii) Orientation : upright
(iii) Size : Enlarged