1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lozanna [386]
3 years ago
15

A laser with wavelength d/8 is shining light on a double slit with slit separation 0.300 mm. This results in an interference pat

tern on a screen a distance away from the slits. We wish to shine a second laser, with a different wavelength, through the same slits.
(a) What is the wavelength of the second laser that would place its second maximum at the same location as the fourth minimum of the first laser, if d = 0.300 mm?
Physics
1 answer:
AlexFokin [52]3 years ago
7 0

Answer:

0.066mm

Explanation:

let wavelength be λ

1st laser

fourth minima occurs at a distance of 7λa/2d

which is equal to 7a/16 as λ = d/8

now for 2nd laser

let wavelength be λ'

second maxima occurs at a distance of 2λ'a/d

so 7a/16 = 2λ'a/d

∴ λ' = 7d/32 = 0.066 mm

You might be interested in
Another term for technology is
Katyanochek1 [597]

Answer:

a. applied science

Explanation:

.

3 0
3 years ago
Read 2 more answers
A 60kg bicyclist (including the bicycle) is pedaling to the
Fittoniya [83]

a) 4 forces

b) 186 N

c) 246 N

Explanation:

a)

Let's count the forces acting on the bicylist:

1) Weight (W=mg): this is the gravitational force exerted on the bicyclist by the Earth, which pulls the bicyclist towards the Earth's centre; so, this force acts downward (m = mass of the bicyclist, g = acceleration due to gravity)

2) Normal reaction (N): this is the reaction force exerted by the road on the bicyclist. This force acts vertically upward, and it balances the weight, so its magnitude is equal to the weight of the bicyclist, and its direction is opposite

3) Applied force (F_A): this is the force exerted by the bicylicist to push the bike forward. Its direction is forward

4) Air drag (R): this is the force exerted by the air on the bicyclist and resisting the motion of the bike; its direction is opposite to the motion of the bike, so it is in the backward direction

So, we have 4 forces in total.

b)

Here we can find the net force on the bicyclist by using Newton's second law of motion, which states that the net force acting on a body is equal to the product between the mass of the body and its acceleration:

F_{net}=ma

where

F_{net} is the net force

m is the mass of the body

a is its acceleration

In this problem we have:

m = 60 kg is the mass of the bicyclist

a=3.1 m/s^2 is its acceleration

Substituting, we find the net force on the bicyclist:

F_{net}=(60)(3.1)=186 N

c)

We can write the net force acting on the bicyclist in the horizontal direction as the resultant of the two forces acting along this direction, so:

F_{net}=F_a-R

where:

F_{net} is the net force

F_a is the applied force (forward)

R is the air drag (backward)

In this problem we have:

F_{net}=186 N is the net force (found in part b)

R=60 N is the magnitude of the air drag

Solving for F_a, we find the force produced by the bicyclist while pedaling:

F_a=F_{net}+R=186+60=246 N

3 0
3 years ago
The parachute on a drag racing car deploys at the end of a run. If the car has a mass of 820 kg and the car is moving 36 m/s, wh
Lelechka [254]

In order to determine the required force to stop the car, proceed as follow:

Calculate the deceleration of the car, by using the following formula:

v^2=v^2_o-2ax

where,

v: final speed = 0m/s (the car stops)

vo: initial speed = 36m/s

x: distance traveled = 980m

a: deceleration of the car= ?

Solve the equation above for a, replace the values of the other parameters and simplify:

\begin{gathered} a=\frac{v^2_o-v^2}{2x} \\ a=\frac{(36\frac{m}{s})^2-(0\frac{m}{s})^2}{2(980m)}=0.66\frac{m}{s^2} \end{gathered}

Next, consider that the formula for the force is:

F=ma

where,

m: mass of the car = 820 kg

a: deceleration of the car = 0.66m/s^2

Replace the previous values and simplify:

F=(820kg)(0.66\frac{m}{s^2})=542.20N

Hence, the required force to stop the car is 542.20N

4 0
1 year ago
"The drawing shows three layers of different materials, with air above and below the layers. The interfaces between the layers a
My name is Ann [436]

Answer:

Angle of incidence that entered material b= 63.1°

Angle of incidence between a and b = 55.9°

Explanation: Using the formular:

n1sintheta1= n2sintheta2

The light ray which enters material B will be

1.4Sin72.8° = 1.5Sin theta

1.3373= 1.5Sintheta

sintheta = 1.3373/1.5

Sin^-1 0.8916 = Theta

63.1 = theta

When the ray hits interface with material a

1.5Sin63.1 = 1.3 Sin theta

1.3374 = 1.3Sin theta

Sintheta= 1.3374/1.3

Sin theta = 1.0877

There will be total reflection off the boundary b c because sin theta exceeded 1 in value.

The equation should be

1.4sin63.1 = 1.4 sin theta

Sin theta=72.8°

When the ray hits air-c boundary:

1.4sin72.8=1.00sin theta

Sin theta=1.3374/1 =1.3374

There is total reflection.

In material a,the ray will:

1.3sin72.8° = 1.00sin theta

There will be total reflection when the ray hits a-b boundary.

1.3sin72.8= 1.5sintheta

Sin theta= 1.2419/ 1.5

Sin theta =0.8279

Theta= Sin^-10.8279= 55.88°

When ray hits c-air boundary

1.4sin63.1= 1.00sintheta

1.2485= sin theta = Toal reflection.

Therefore when the ray of light pass through the layers of material a, b and c the boundary with air on top and bottom will be total reflection.

7 0
3 years ago
A 1.5m wire carries a 6 A current when a potential difference of 68 V is applied. What is the resistance of the wire?
ANTONII [103]

Answer:

11.3 \Omega

Explanation:

We can find the resistance of the wire by using Ohm's law:

V=RI

where

V is the voltage applied

R is the resistance

I is the current

In this problem, we know I = 6 A and V = 68 V, so we can re-arrange the equation to find the resistance of the wire:

R=\frac{V}{I}=\frac{68 V}{6 A}=11.3 \Omega

6 0
3 years ago
Other questions:
  • Study the velocity vs. time graph shown.
    7·1 answer
  • you push your little sister on a swing and in 1.6 minutes you make 52 pushes what is the frequency of your swing? answer in unit
    9·1 answer
  • A 1050 kg sports car is moving westbound at 13.0 m/s on a level road when it collides with a 6320 kg truck driving east on the s
    11·1 answer
  • In a common but dangerous prank, a chair is pulled away as a person is moving downward to sit on it, causing the victim to land
    6·1 answer
  • Who pioneered the use of galvanoplastic compounds for preserving footprints and ballistics?
    11·2 answers
  • Recall from Chapter 1 that a watt is a unit of en- ergy per unit time, and one watt (W) is equal to one joule per second ( J·s–1
    15·1 answer
  • Electric Charge andStatic ElectricityIt was known as early as 600BCEthat objects could become charged by rubbing fur on various
    12·1 answer
  • You are considering developing a new food-chopping appliance which uses an Arduino with a touchscreen to control the motor. You
    10·1 answer
  • A student is told to use 20.0 g of sodium chloride to make an aqueous solution that has a concentration of 10.0 g/L (grams of so
    15·2 answers
  • What is the length of a pendulum that has a period of 4. 89 seconds?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!