Answer: A
Explanation: For the water cycle to work, water has to get from the Earth's surface back up into the skies so it can rain back down and ruin your parade or water your crops or yard. It is the invisible process of evaporation that changes liquid and frozen water into water-vapor gas, which then floats up into the skies to become clouds.
<u>Answer:</u>
<em>The amount of energy needed when water at 72 degrees c freezes completely at 0 degrees c is
Joules</em>
<em></em>
<u>Explanation:</u>

where
= Final T - Initial T

=30125J
Q is the heat energy in Joules
c is the specific heat capacity (for water 1.0 cal/(g℃)) or 4.184 J/(g℃)
m is the mass of water
mass of water is assumed as 100 g (since not mentioned)
is the heat energy required for the phase change
=mass × heat of fusion

Total heat =
Total Heat = 30123J + 33600J
= 63725 J
=
Joules is the answer
Answer:
The first two options are correct
Explanation:
The first two options are part of the benefits of a parallel connection of bulbs in a circuit. Here, the voltage of each connecting bulb is the same as the voltage of the bulb in the circuit hence all the bulbs have the same voltage running through them. Thus, when one bulb is removed/burns out, it does not affect the remaining bulbs (those ones will remain lit). Also, the addition of bulb(s) does not cause the remaining bulbs in the circuit to get dimmer (since they will all have the same voltage).
Answer:
It gives the number of protons in the nucleus of each atom of that element.
Explanation:
Answer:
D. It predicts whether or not a reaction will be spontaneous.
Explanation:
<em>What does Gibbs free energy (ΔG) predict?
.</em>
A. It predicts what the rate of the reaction will be. NO. ΔG is a thermodynamical parameter and it is not related to the kinetics of the reaction.
B. It predicts how high the activation energy is. NO. ΔG is a thermodynamical parameter and it is not related to the kinetics of the reaction.
C. It predicts if entropy will increase or decrease. NO. ΔG depends on the entropy but not the other way around.
D. It predicts whether or not a reaction will be spontaneous. YES. If ΔG < 0 the reaction is spontaneous and if ΔG > 0 the reaction is not spontaneous.