<u>Answer</u>
81.94 m
<u>Explanation</u>
The centripetal force of an object moving in a circular path is given by:
F = mv²/r Where m is the mass of the object, v is the constant velocity and r is the radius of the curve.
F = mv²/r
3,300 = (1600×13²)/r
3,300 = 270,400/r
r = 270,400/3,300
= 81.94 m
Answer:
Explanation:
Firstly, we have to define momentum.
Momentum is define as the product of mass and velocity.
That is P = mass×velocity
Also considering the third law of motion which states that: For every action, there is equal and opposite reaction.
Moreso, considering the 2nd law of motion which states that the rate of change in the momentum of a body is equal to the applied force and takes place in the direction of the applied force.
Now, applying P = mass×velocity
They both have same mass and velocity definitely, they will both experience same momentum.
Also from the question, the both share same velocity hence, the will both hit the wall with same velocity meaning the will both feel the same impact from the wall as well. Hence the third law of motion proves this right.
Answer: this answer is D. That's what I think it is
Explanation:
Every object has thermal energy (better word than heat, since we associate that with high temperatures). This is actually the molecules vibrating, moving a lot. More thermal energy means more vibrating, and thus also expanding in volume.
Answer:
Group IA elements have only one valency electron while Group IIA have two valency electrons.
Group IA elements have cations with higher charge density hence polarizing anions easier resulting into covalent character while Group IIA elements have cations with lower charge density hence difficulty in distorting anions resulting into a ionic character. This is due to difference in cationic radii and charges