In chemical reactions, the actual yield is not the same as the expected yield . Actual yield is lower than the theoretical yield . Then we have to find the yield percentage. To see what percentage of the theoretical yield is the actual yield.
Percent yield = actual yield / theoretical yield x 100%
Percent yield = 24.6/55.9 x100%
Percent yield = 44%
This is a benefit I’m not sure if a negative
This strong current of warm water influences the climate of the east coast of Florida, keeping temperatures there warmer in the winter and cooler in the summer than the other southeastern states. Since the Gulf Stream also extends toward Europe, it warms western European countries as well.
Answer:
for the given reaction is -99.4 J/K
Explanation:
Balanced reaction: 
![\Delta S^{0}=[1mol\times S^{0}(NH_{3})_{g}]-[\frac{1}{2}mol\times S^{0}(N_{2})_{g}]-[\frac{3}{2}mol\times S^{0}(H_{2})_{g}]](https://tex.z-dn.net/?f=%5CDelta%20S%5E%7B0%7D%3D%5B1mol%5Ctimes%20S%5E%7B0%7D%28NH_%7B3%7D%29_%7Bg%7D%5D-%5B%5Cfrac%7B1%7D%7B2%7Dmol%5Ctimes%20S%5E%7B0%7D%28N_%7B2%7D%29_%7Bg%7D%5D-%5B%5Cfrac%7B3%7D%7B2%7Dmol%5Ctimes%20S%5E%7B0%7D%28H_%7B2%7D%29_%7Bg%7D%5D)
where
represents standard entropy.
Plug in all the standard entropy values from available literature in the above equation:
![\Delta S^{0}=[1mol\times 192.45\frac{J}{mol.K}]-[\frac{1}{2}mol\times 191.61\frac{J}{mol.K}]-[\frac{3}{2}mol\times 130.684\frac{J}{mol.K}]=-99.4J/K](https://tex.z-dn.net/?f=%5CDelta%20S%5E%7B0%7D%3D%5B1mol%5Ctimes%20192.45%5Cfrac%7BJ%7D%7Bmol.K%7D%5D-%5B%5Cfrac%7B1%7D%7B2%7Dmol%5Ctimes%20191.61%5Cfrac%7BJ%7D%7Bmol.K%7D%5D-%5B%5Cfrac%7B3%7D%7B2%7Dmol%5Ctimes%20130.684%5Cfrac%7BJ%7D%7Bmol.K%7D%5D%3D-99.4J%2FK)
So,
for the given reaction is -99.4 J/K
Atomic Number-6
Mass Number-14
Answer:
<span>ρ≅13.0⋅g⋅m<span>L<span>−1</span></span></span> = <span>13.0⋅g⋅c<span>m<span>−3</span></span></span>
Explanation:
<span>Density=<span>MassPer unit Volume</span></span> = <span><span>75.0⋅g</span><span><span>(36.5−31.4)</span>⋅mL</span></span> <span>=??g⋅m<span>L<span>−1</span></span></span>
Note that <span>1⋅mL</span> = <span>1⋅c<span>m<span>−3</span></span></span>; these are equivalent units of volume;
i.e. <span>1⋅c<span>m3</span></span> = <span>1×<span><span>(<span>10<span>−2</span></span>⋅m)</span>3</span>=1×<span>10<span>−6</span></span>⋅<span>m3</span>=<span>10<span>−3</span></span>⋅L=1⋅mL</span>.