1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sammy [17]
3 years ago
14

Dominoes standing in a row will fall if the first one is tipped towards the others. How does the law of convection of energy des

cribe this?
Physics
1 answer:
Amanda [17]3 years ago
3 0
When placing each domino upright, potential energy is conserved in that domino. When kinetic energy is initially added into the first domino, this energy converts the next domino's potential energy to kinetic energy, which is transferred to the next domino afterwards.
You might be interested in
An ideal spring with spring constant k is hung from the ceiling. The initial length of the spring, with nothing attached to the
hram777 [196]

The mass m of the object = 5.25 kg

<h3>Further explanation</h3>

Given

k = spring constant = 3.5 N/cm

Δx= 30 cm - 15 cm = 15 cm

Required

the mass m

Solution

F=m.g

Hooke's Law

F = k.Δx

\tt m.g=k.\Delta x\\\\m.10=3.5\times 15\\\\m=5.25~kg

7 0
3 years ago
Consider a cyclotron in which a beam of particles of positive charge q and mass m is moving along a circular path restricted by
Ulleksa [173]

A) v=\sqrt{\frac{2qV}{m}}

B) r=\frac{mv}{qB}

C) T=\frac{2\pi m}{qB}

D) \omega=\frac{qB}{m}

E) r=\frac{\sqrt{2mK}}{qB}

Explanation:

A)

When the particle is accelerated by a potential difference V, the change (decrease) in electric potential energy of the particle is given by:

\Delta U = qV

where

q is the charge of the particle (positive)

On the other hand, the change (increase) in the kinetic energy of the particle is (assuming it starts from rest):

\Delta K=\frac{1}{2}mv^2

where

m is the mass of the particle

v is its final speed

According to the law of conservation of energy, the change (decrease) in electric potential energy is equal to the increase in kinetic energy, so:

qV=\frac{1}{2}mv^2

And solving for v, we find the speed v at which the particle enters the cyclotron:

v=\sqrt{\frac{2qV}{m}}

B)

When the particle enters the region of magnetic field in the cyclotron, the magnetic force acting on the particle (acting perpendicular to the motion of the particle) is

F=qvB

where B is the strength of the magnetic field.

This force acts as centripetal force, so we can write:

F=m\frac{v^2}{r}

where r is the radius of the orbit.

Since the two forces are equal, we can equate them:

qvB=m\frac{v^2}{r}

And solving for r, we find the radius of the orbit:

r=\frac{mv}{qB} (1)

C)

The period of revolution of a particle in circular motion is the time taken by the particle to complete one revolution.

It can be calculated as the ratio between the length of the circumference (2\pi r) and the velocity of the particle (v):

T=\frac{2\pi r}{v} (2)

From eq.(1), we can rewrite the velocity of the particle as

v=\frac{qBr}{m}

Substituting into(2), we can rewrite the period of revolution of the particle as:

T=\frac{2\pi r}{(\frac{qBr}{m})}=\frac{2\pi m}{qB}

And we see that this period is indepedent on the velocity.

D)

The angular frequency of a particle in circular motion is related to the period by the formula

\omega=\frac{2\pi}{T} (3)

where T is the period.

The period has been found in part C:

T=\frac{2\pi m}{qB}

Therefore, substituting into (3), we find an expression for the angular frequency of motion:

\omega=\frac{2\pi}{(\frac{2\pi m}{qB})}=\frac{qB}{m}

And we see that also the angular frequency does not depend on the velocity.

E)

For this part, we use again the relationship found in part B:

v=\frac{qBr}{m}

which can be rewritten as

r=\frac{mv}{qB} (4)

The kinetic energy of the particle is written as

K=\frac{1}{2}mv^2

So, from this we can find another expression for the velocity:

v=\sqrt{\frac{2K}{m}}

And substitutin into (4), we find:

r=\frac{\sqrt{2mK}}{qB}

So, this is the radius of the cyclotron that we must have in order to accelerate the particles at a kinetic energy of K.

Note that for a cyclotron, the acceleration of the particles is achevied in the gap between the dees, where an electric field is applied (in fact, the magnetic field does zero work on the particle, so it does not provide acceleration).

6 0
4 years ago
Mr. Mehta cut several 275-centimeter lengths of wallpaper to put in his
mihalych1998 [28]

Answer:

2.75 meters.

Explanation:

1 meter = 100 centimeters.

There are 275 centimeters.

275/100=2.75

So, each piece of wallpaper was 2.75 meters long.

6 0
3 years ago
The yoga term asanas are which of the following?
frutty [35]

Answer:

i guss its A

Explanation:

3 0
3 years ago
A car's bumper is designed to withstand a 5.04 km/h (1.4-m/s) collision with an immovable object without damage to the body of t
emmasim [6.3K]

Answer:

the magnitude of the average force on the bumper is 3189.8 N

Explanation:

Given the data in the question;

In terms of force and displacement, work done is;

W =F^> × x^>

W = Fxcos\theta    ------- let this be equation 1

where F is force applied, x is displacement and θ is angle between force and displacement.

Now, since the displacement of the bumper and force acting on it is in the same direction,

hence, θ = 0°

we substitute into equation 1

W = Fxcos( 0° )

W = Fx ------- let this be equation 2

Now, using work energy theorem,

total work done on the system is equal to the change in kinetic energy of the system.

W_{net = ΔKE

= \frac{1}{2}mv² -  \frac{1}{2}mu² --------- let this be equation 3

where m is mass of object, v is final velocity, u is initial velocity.

from equation 2 and 3

Fx = \frac{1}{2}mv² -  \frac{1}{2}mu²

we make F, the subject of formula

F = \frac{m}{2x}( v² - u² )

given that mass of car m = 830 kg, x = 0.255 m, v = 0 m/s, and u = 1.4 m/s

so we substitute

F = \frac{830}{(2)(0.255)}( (0)² - (1.4)² )

F = 1627.45098 ( 0 - 1.96 )

F = 1627.45098 ( - 1.96 )

F = -3189.8 N

The negative sign indicates that the direction of the force was in opposite compare to the direction of the velocity of the car.

Therefore, the magnitude of the average force on the bumper is 3189.8 N

6 0
3 years ago
Other questions:
  • A 0.100-kg ball traveling horizontally on a frictionless surface approaches a very massive stone at 20.0 m/s perpendicular to wa
    11·1 answer
  • Which is a chemical reaction? Select one: a. a peanut shell cracking open into two halves b. solid chocolate melting into liquid
    6·2 answers
  • Please i really need help..
    10·2 answers
  • A student is investigating the best method for heating marshmallows using an open flame.
    11·1 answer
  • Why has the atomic model changed over time
    10·1 answer
  • An object is placed 25 cm from a convex lens whose focal length is 10 cm. The image distance is ________ cm.
    7·1 answer
  • Explain why a metal box does not fall through a table to the floor???
    8·1 answer
  • If a 2 kg ball is moving at 6 m/s to the right and then hits a wall and bounces back at - 4 m/s (left), what is the change in mo
    12·1 answer
  • A shopping cart moves from a point 3.0m west of a flagpole to a point 18.0m east of the flagpole in 2.5s. Find its average veloc
    10·1 answer
  • Which transformation will map figure L onto figure L'? (1 point) Two congruent triangles Figure L and Figure L prime are drawn o
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!