Answer:
dium (a liquid or a gas). This pattern of motion typically consists of random fluctuations in a particle's position inside a fluid sub-domain, followed by a relocation to another sub-domain. Each relocation is followed by more fluctuations within the new closed volume. This pattern describes a fluid at thermal equilibrium, defined by a given temperature. Within such a fluid, there exists no preferential direction of flow (as in transport phenomena). More specifically, the fluid's overall linear and angular momenta remain null over time. The kinetic energies of the molecular Brownian motions, together with those of molecular rotations and vibrations, sum up to the caloric component of a fluid's internal energy (the Equipartition theorem).
Explanation:
Answer:
0.189 g.
Explanation:
- This problem is an application on <em>Henry's law.</em>
- Henry's law states that the solubility of a gas in a liquid is directly proportional to its partial pressure of the gas above the liquid.
- Solubility of the gas ∝ partial pressure
- If we have different solubility at different pressures, we can express Henry's law as:
<em>S₁/P₁ = S₂/P₂,</em>
S₁ = 0.0106/0.792 = 0.0134 g/L and P₁ = 0.321 atm
S₂ = ??? g/L and P₂ = 5.73 atm
- So, The solubility of the gas at 5.73 atm (S₂) = S₁.P₂/P₁ = (0.0134 g/L x 5.73 atm) / (0.321 atm) = 0.239 g/L.
<em>The quantity in (g) = S₂ x V = (0.239 g/L)(0.792 L) = 0.189 g.</em>
<em></em>
Answer:
0.120M is the concentration of the solution
Explanation:
<em>Assuming the mass of sodium nitrate dissolved was 2.552g</em>
<em />
Molar concentration is an unit of concentration widely used in chemsitry defined as the moles of solute (In this case NaNO3) in 1L of solution.
To find this question we must find the moles of NaNO3 in 2.552g. With this mass and the volume (250mL = 0.250L) we can find molar concentration as follows:
<em>Moles NaNO3 -Molar mass: 84.99g/mol-</em>
2.552g * (1mol / 84.99g) = 0.0300 moles NaNO3
<em>Molar concentration:</em>
0.0300 moles NaNO3 / 0.250L =
<h3>0.120M is the concentration of the solution</h3>
Answer:
Manganese decreases from 4+ to 2+ (reduced and oxidizing agent) and nitrogen increases from 2+ to 5+ (oxidized and reducing agent).
Explanation:
Hello there!
In this case, according to the given redox reaction, we rewrite it as a convenient first step:

Next, we assign the oxidation numbers as follows:

Thus, we can see that both manganese and nitrogen undergo a change in their oxidation number, the former decreases from 4+ to 2+ (reduced and oxidizing agent) and the latter increases from 2+ to 5+ (oxidized and reducing agent).
Regards!
Answer:
It’s A
Explanation:
The nights are shorter. I just took the unit test review