1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lana71 [14]
3 years ago
13

For a certain gas, Cp = 840.4 J/kg-K; and Cv = 651.5 J/kg-K. How fast will sound travel in this gas if it is at an adiabatic sta

te with a temperature of 377 K.
Engineering
2 answers:
Burka [1]3 years ago
6 0

Answer:

Sound will travel with a speed of 302.9 m/sec

Explanation:

We have given c_p=840.4j/kg-K

And c_v=651.5j/kg-K

Temperature T = 377 K

Gas constant R=c_p-c_v=840.4-651.5=188.9j/kg-K

And \gamma =\frac{c_p}{c_v}=\frac{840.4}{651.5}=1.289

Speed is given by v=\sqrt{\gamma RT}=\sqrt{1.289\times 188.9\times 377}=302.9794m/sec

So sound will travel with a speed of 302.9 m/sec

Crank3 years ago
3 0

Answer:

The speed of the sound for the adiabatic gas is 313 m/s

Explanation:

For adiabatic state gas, the speed of the sound c is calculated by the following expression:

c=\sqrt(\gamma*R*T)

Where R is the gas's particular constant defined in terms of Cp and Cv:

R=Cp-Cv

For particular values given:

R=840.4 \frac{J}{Kg-K}- 651.5 \frac{J}{Kg-K}

R=188.9 \frac{J}{Kg-K}

The gamma undimensional constant is also expressed as a function of Cv and Cp:

\gamma=Cp/Cv

\gamma=840.4 \frac{J}{Kg-K} / 651.5 \frac{J}{Kg-K}

\gamma=1.29

And the variable T is the temperature in Kelvin. Thus for the known temperature:

c=\sqrt(1.29*188.9 \frac{J}{Kg-K}*377 K)

c=\sqrt(91867.73 \frac{J}{Kg})

The Jules unit can expressing by:

J=N.m=\frac{Kg.m}{s^2}* m

J=\frac{Kg.m^2}{s^2}

Replacing the new units for the speed of the sound:

c=\sqrt(91867.73 \frac{Kg.m^2}{Kg.s^2})

c=\sqrt(91867.73 \frac{m^2}{s^2})

c=313 m/s

You might be interested in
on the same scale for stress, the tensile true stress-true strain curve is higher than the engineeringstress-engineering strain
Bess [88]

Answer:

The condition does not hold for a compression test

Explanation:

For a compression test the engineering stress - strain curve is higher than the actual stress-strain curve and this is because the force needed in compression is higher than the force needed during Tension.  The higher the force in compression leads to increase in the area therefore for the same scale of stress the there is more stress on the Engineering curve making it higher than the actual curve.

<em>Hence the condition of : on the same scale for stress, the tensile true stress-true strain curve is higher than the engineering stress-engineering strain curve.</em><em> </em>does not hold for compression test

5 0
2 years ago
Which one is suitable for industries petrol engine or diesel engine and why?
klio [65]

Answer:

diesel engine

Explanation:

because diesel is stronger than petrol

3 0
3 years ago
Read 2 more answers
Drivers education - Unit 3
melamori03 [73]

The following scenarios are pertinent to driving conditions that one may encounter. See the following rules of driving.

<h3>What do you do when the car is forced into the guardrail?</h3>

Best response:

  • I'll keep my hands on the wheel and slow down gradually.
  • The reason I keep my hands on the steering wheel is to avoid losing control.
  • This will allow me to slowly back away from the guard rail.
  • The next phase is to gradually return to the fast lane.
  • Slamming on the brakes at this moment would result in a collision with the car behind.

Scenario 2: When driving on a wet road and the car begins to slide

Best response:

  • It is not advised to accelerate.
  • Pumping the brakes is not recommended.
  • Even lightly depressing and holding down the brake pedal is not recommended.
  • The best thing to do is take one foot off the gas pedal.
  • There should be no severe twists at this time.

Scenario 3: When you are in slow traffic and you hear the siren of an ambulance behind

Best response:

  • The best thing to do at this moment is to go to the right side of the lane and come to a complete stop.
  • This helps to keep the patient in the ambulance alive.
  • It also provide a clear path for the ambulance.
  • Moving to the left is NOT recommended.
  • This will exacerbate the situation. If there is no place to park on the right shoulder of the road, it is preferable to stay in the lane.

Learn more about rules of driving. at;

brainly.com/question/8384066

#SPJ1

4 0
1 year ago
The acceleration of a particle is given by a = 2t − 10, where a is in meters per second squared and t is in seconds. Determine t
tensa zangetsu [6.8K]

Answer

given,

a = 2 t - 10

velocity function

we know,

\dfrac{dv}{dt}=a

\dfrac{dv}{dt}=(2t-10)

integrating both side

\int dv =\int (2t -10) dt

 v = t² - 10 t + C

at t = 0   v = 3

so, 3 = 0 - 0 + C

     C = 3

Velocity function is equal to v = t² - 10 t + 3

Again we know,

\dfrac{dx}{dt}=v

\dfrac{dx}{dt}=(t^2-10t + 3)

integrating both side

\int dx =\int (t^2-10t + 3)dt

x = \dfrac{t^3}{3}- 10\dfrac{t^2}{2} + 3 t + C

now, at t= 0 s = -4

-4 = \dfrac{0^3}{3}- 10\dfrac{0^2}{2} + 0 + C

C = -4

So,

x = \dfrac{t^3}{3}- 10\dfrac{t^2}{2} + 3 t-4

Position function is equal to x = \dfrac{t^3}{3}- 10\dfrac{t^2}{2} + 3 t-4

8 0
3 years ago
The second programming project involves writing a program that accepts an arithmetic expression of unsigned integers in postfix
Tpy6a [65]

Answer:

Explanation:

Note: In case of any queries, just comment in box I would be very happy to assist all your queries

SourceCode:

// MyGUI.java:

// Import packages

import java.awt.FlowLayout;

import java.awt.GridLayout;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.util.EmptyStackException;

import java.util.Stack;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JOptionPane;

import javax.swing.JPanel;

import javax.swing.JTextField;

import javax.swing.SwingConstants;

// Declaare and define the class MyGUI

abstract class MyGUI extends JFrame implements ActionListener {

JTextField userInput;

JLabel inputDescLbl, resultLbl;

JPanel inputPanel, resultPanel;

JButton evlBtn;

Stack<Object> stk;

// Define the constructor MyGUI

MyGUI() {

super("Tree Address Generator");

inputPanel = new JPanel(new FlowLayout());

resultPanel = new JPanel(new FlowLayout());

setLayout(new GridLayout(2, 1));

userInput = new JTextField(20);

inputDescLbl = new JLabel("Enter Postfix Expression:");

evlBtn = new JButton("Construct Tree");

evlBtn.addActionListener(this);

resultLbl = new JLabel("Infix Expression:", SwingConstants.LEFT);

add(inputPanel);

add(resultPanel);

inputPanel.add(inputDescLbl);

inputPanel.add(userInput);

inputPanel.add(evlBtn);

resultPanel.add(resultLbl);

stk = new Stack<Object>();

}

}

//Stack.java:

// Declare and define the class Stack

class Stack {

private int[] a;

private int top, m;

public Stack(int max) {

m = max;

a = new int[m];

top = -1; }

public void push(int key) {

a[++top] = key; }

public int pop() {

return (a[top--]); }

}

// Declare and define the class Evaluation()

class Evaluation {

public int calculate(String s) {

int n, r = 0;

n = s.length();

Stack a = new Stack(n);

for (int i = 0; i < n; i++) {

char ch = s.charAt(i);

if (ch >= '0' && ch <= '9')

a.push((int) (ch - '0'));

else if (ch == ' ')

continue;

else {

int x = a.pop();

int y = a.pop();

switch (ch) {

case '+':

r = x + y;

break;

case '-':

r = y - x;

break;

case '*':

r = x * y;

break;

case '/':

r = y / x;

break;

default:

r = 0;

}

a.push(r);

}

}

r = a.pop();

return (r);

}

}

// PostfixToInfix.java:

// Import packages

import java.util.Scanner;

import java.util.Stack;

// Declare and define the class PostfixToInfix

class PostfixToInfix {

// Determine whether the character entered is an operator or not

private boolean isOperator(char c) {

if (c == '+' || c == '-' || c == '*' || c == '/' || c == '^')

return true;

return false;

}

// Declare and define the convert()

public String convert(String postfix) {

Stack<String> s = new Stack<>();

for (int i = 0; i < postfix.length(); i++) {

char c = postfix.charAt(i);

if (isOperator(c)) {

String b = s.pop();

String a = s.pop();

s.push("(" + a + c + b + ")");

} else

s.push("" + c);

}

return s.pop();

}

// Program starts from main()

public static void main(String[] args) {

PostfixToInfix obj = new PostfixToInfix();

Scanner sc = new Scanner(System.in);

// Prompt the user to enter the postfix expression

System.out.print("Postfix : ");

String postfix = sc.next();

// Display the expression in infix expression

System.out.println("Infix : " + obj.convert(postfix));

}

}

Output:

e Console X terminated PostfixTolnfix [Java Application] C:\Program Files\Java\jrel.8.0_121\bin\javaw.exe Postfix : ABD++C-D/ .

3 0
2 years ago
Other questions:
  • What is a p-n junction? Show by the diagram.
    6·1 answer
  • In a heat-treating process, a 1-kg metal part, initially at 1075 K, is quenched in a closed tank containing 100 kg of water, ini
    10·1 answer
  • What is a core self-evaluation, include identifying and explaining the components of core self-evaluation. And, how a group lead
    8·2 answers
  • Where you live might affect how often you change your cabin air filter.<br> True<br> False
    8·1 answer
  • Which happens when a wave passes through an opening
    12·2 answers
  • Okay bro let’s go man yes yes
    9·2 answers
  • A building permit allows a builder to?
    6·1 answer
  • Where would outdoor Air quality monitors need to be placed to properly record data?
    15·1 answer
  • A red circle and diagonal slash on a sign means that:.
    10·1 answer
  • A sprinter reaches his maximum speed in 2.5sec from rest with constant acceleration. He then maintains that speed and finishes t
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!