1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
devlian [24]
3 years ago
11

.If aligned and continuous carbon fibers with a diameter of 6.90 micron are embedded within an epoxy, such that the bond strengt

h across the fiber-epoxy interface is 17 MPa, and the shear yield strength of the epoxy is 68 MPa, compute the minimum fiber length, in millimeters, to guarantee that the fibers are conveying an optimum fraction of force that is applied to the composite. The tensile strength of these carbon fibers is 3960 MPa.
Engineering
1 answer:
Alina [70]3 years ago
7 0

Answer:

the required minimum fiber length is 0.80365 mm

Explanation:

Given the data in the question;

Diameter D = 6.90 microns = 6.90 × 10⁻⁶ m

Bond strength ζ = 17 MPa

Shear yield strength ζ_y = 68 Mpa

tensile strength of carbon fibers 6t_{fiber = 3960 MPa.

To determine the minimum fiber length we make use of the following relation;

L = (6t_{fiber × D) / 2ζ

we substitute our given values into the equation;

L = ( 3960 × 6.90 × 10⁻⁶) / (2 × 17 )

L = 0.027324 / 34

L = 0.000803647 m

L = 0.000803647 × (1000) mm

L = 0.80365 mm

Therefore, the required minimum fiber length is 0.80365 mm

You might be interested in
Determine the angular acceleration of the uniform disk if (a) the rotational inertia of the disk is ignored and (b) the inertia
lukranit [14]

Answer:

α = 7.848 rad/s^2  ... Without disk inertia

α = 6.278 rad/s^2  .... With disk inertia

Explanation:

Given:-

- The mass of the disk, M = 5 kg

- The right hanging mass, mb = 4 kg

- The left hanging mass, ma = 6 kg

- The radius of the disk, r = 0.25 m

Find:-

Determine the angular acceleration of the uniform disk without and with considering the inertia of disk

Solution:-

- Assuming the inertia of the disk is negligible. The two masses ( A & B )  are hung over the disk in a pulley system. The disk is supported by a fixed support with hinge at the center of the disk.

- We will make a Free body diagram for each end of the rope/string ties to the masses A and B.

- The tension in the left and right string is considered to be ( T ).

- Apply newton's second law of motion for mass A and mass B.

                      ma*g - T = ma*a

                      T - mb*g = mb*a

Where,

* The tangential linear acceleration ( a ) with which the system of two masses assumed to be particles move with combined constant acceleration.

- g: The gravitational acceleration constant = 9.81 m/s^2

- Sum the two equations for both masses A and B:

                      g* ( ma - mb ) = ( ma + mb )*a

                      a =  g* ( ma - mb ) / ( ma + mb )

                      a = 9.81* ( 6 - 4 ) / ( 6 + 4 ) = 9.81 * ( 2 / 10 )

                      a = 1.962 m/s^2  

- The rope/string moves with linear acceleration of ( a ) which rotates the disk counter-clockwise in the direction of massive object A.

- The linear acceleration always acts tangent to the disk at a distance radius ( r ).

- For no slip conditions, the linear acceleration can be equated to tangential acceleration ( at ). The correlation between linear-rotational kinematics is given below :

                     a = at = 1.962 m/s^2

                     at = r*α      

Where,

           α: The angular acceleration of the object ( disk )

                    α = at / r

                    α = 1.962 / 0.25

                    α = 7.848 rad/s^2                                

- Take moments about the pivot O of the disk. Apply rotational dynamics conditions:

             

                Sum of moments ∑M = Iα

                 ( Ta - Tb )*r = Iα

- The moment about the pivots are due to masses A and B.

 

               Ta: The force in string due to mass A

               Tb: The force in string due to mass B

                I: The moment of inertia of disk = 0.5*M*r^2

                   ( ma*a - mb*a )*r = 0.5*M*r^2*α

                   α = ( ma*a - mb*a ) / ( 0.5*M*r )

                   α = ( 6*1.962 - 4*1.962 ) / ( 0.5*5*0.25 )

                   α = ( 3.924 ) / ( 0.625 )

                   α = 6.278 rad/s^2

6 0
3 years ago
A long corridor has a single light bulb and two doors with light switch at each door. design logic circuit for the light; assume
sattari [20]

Answer and Explanation:

Let A denote its switch first after that we will assume B which denotes the next switch and then we will assume C stand for both the bulb. we assume 0 mean turn off while 1 mean turn on, too. The light is off, as both switches are in the same place. This may be illustrated with the below table of truth:

A                    B                       C (output)

0                    0                        0

0                    1                          1

1                     0                         1

1                     1                          0

The logic circuit is shown below

C = A'B + AB'

If the switches are in multiple places the bulb outcome will be on on the other hand if another switches are all in the same place, the result of the bulb will be off. This gate is XOR. The gate is shown in the diagram adjoining below.

3 0
3 years ago
Mnsdcbjksdhkjhvdskjbvfdfkjbcv hjb dfkjbkjfvvfebjkhbvefgjdf
Julli [10]

Answer:

ik true eedcggftggggfffff

8 0
3 years ago
Read 2 more answers
Explain the difference between thermoplastics and thermosets giving structure property correlation.
Misha Larkins [42]

Answer:

Explanation:

Thermosetting polymers are infusible and insoluble polymers. The reason for such behavior is that the chains of these materials form a three-dimensional spatial network, intertwining with strong equivalent bonds. The structure thus formed is a conglomerate of interwoven chains giving the appearance and functioning as a macromolecule, which as the temperature rises, simply the chains are more compacted, making the polymer more resistant to the point where it degrades.

Macromolecules are molecules that have a high molecular mass, formed by a large number of atoms. Generally they can be described as the repetition of one or a few minimum units or monomers, forming the polymers. In contrast, a thermoplastic is a material that at relatively high temperatures, becomes deformable or flexible, melts when heated and hardens in a glass transition state when it cools sufficiently. Most thermoplastics are high molecular weight polymers, which have associated chains through weak Van der Waals forces (polyethylene); strong dipole-dipole and hydrogen bond interactions, or even stacked aromatic rings (polystyrene). Thermoplastic polymers differ from thermosetting polymers or thermofixes in that after heating and molding they can overheat and form other objects.

Thermosetting plastics have some advantageous properties over thermoplastics. For example, better resistance to impact, solvents, gas permeation and extreme temperatures. Among the disadvantages are, generally, the difficulty of processing, the need for curing, the brittle nature of the material (fragile) and the lack of reinforcement when subjected to tension. But even so in many ways it surpasses the thermoplastic.

The physical properties of thermoplastics gradually change if they are melted and molded several times (thermal history), these properties are generally diminished by weakening the bonds. The most commonly used are polyethylene (PE), polypropylene (PP), polybutylene (PB), polystyrene (PS), polymethylmethacrylate (PMMA), polyvinylchloride (PVC), ethylene polyterephthalate (PET), Teflon (or polytetrafluoroethylene, PTFE) and nylon (a type of polyamide).

They differ from thermosets or thermofixes (bakelite, vulcanized rubber) in that the latter do not melt when raised at high temperatures, but burn, making it impossible to reshape them.

Many of the known thermoplastics can be the result of the sum of several polymers, such as vinyl, which is a mixture of polyethylene and polypropylene.

When they are cooled, starting from the liquid state and depending on the temperatures to which they are exposed during the solidification process (increase or decrease), solid crystalline or non-crystalline structures may be formed.

This type of polymer is characterized by its structure. It is formed by hydrocarbon chains, like most polymers, and specifically we find linear or branched chains

4 0
3 years ago
A specimen of commercially pure copper has a strength of 240 MPa. Estimate its average grain diameter using the Hall-Petch equat
romanna [79]

Answer:

3.115× 10^{-3} meter

Explanation:

hall-petch constant for copper is given by

      S_0=25 MPa

      k=0.12 for copper

now according to hall-petch equation

S_Y=S_0 +\frac{K}{\sqrt{D}}

240=25+\frac{0.12}{\sqrt{D}}

D=3.115× 10^{-3} meter

so the grain diameter using the hall-petch equation=3.115×  10^{-3} meter

5 0
3 years ago
Other questions:
  • The development team recently moved a new application into production for the accounting department. After this occurred, the Ch
    6·1 answer
  • While discussing run-flat tires: Technician A says that some are self-sealing tires and are designed to quickly and permanently
    15·1 answer
  • In dynamics, the friction force acting on a moving object is always a) in the same direction of its motion b) a kinetic friction
    15·1 answer
  • Hii I need help can someone help me
    15·1 answer
  • When welding stick (SMAW) what is the distance between top of bare end of electrode and base metal?
    7·1 answer
  • A minor road intersects a major 4-lane divided road with a design speed of 50 mph and a median width of 12 ft. The intersection
    13·1 answer
  • The temperature controller for a clothes dryer consists of a bimetallic switch mounted on an electrical heater attached to a wal
    12·1 answer
  • 1. When and why should we use the Pattern option?
    12·1 answer
  • true or false: the types of building materials that’s should be used in a project does not constitute a conditional for projects
    13·2 answers
  • Technician A says that synthetic blend oil has the same service life as that of full synthetic oils. Technician B says that conv
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!