The new volume when pressure increases to 2,030 kPa is 0.8L
BOYLE'S LAW:
The new volume of a gas can be calculated using Boyle's law equation:
P1V1 = P2V2
Where;
- P1 = initial pressure (kPa)
- P2 = final pressure (kPa)
- V1 = initial volume (L)
- V2 = final volume (L)
According to this question, a 4.0 L balloon has a pressure of 406 kPa. When the pressure increases to 2,030 kPa, the volume is calculated as:
406 × 4 = 2030 × V2
1624 = 2030V2
V2 = 1624 ÷ 2030
V2 = 0.8L
Therefore, the new volume when pressure increases to 2,030 kPa is 0.8L.
Learn more about Boyle's law calculations at: brainly.com/question/1437490?referrer=searchResults
Answer:
the ion will have additional 2 electrons so it will be 18
Answer:
Polarity results from an unequal sharing of valence electrons. In SO3 there is the sharing is equal. Therefore SO3 is a nonpolar molecule.
Explanation:
This problem is providing us with the mass of propane, its enthalpy of combustion, and the initial and final temperature of water that can be heated from the burning of this fuel. At the end, the result turns out to be 42.27 L.
<h3>Combustion:</h3>
In chemistry, combustion reactions are based on the burning of fuels by using oxygen and producing both carbon dioxide and water. For propane, we will have:

Hence, we can calculate the heat released from this reaction by using the mass, which has to be converted to moles, and the given enthalpy of combustion:

<h3>Calorimetry:</h3>
In chemistry, we can analyze the mass-specific heat-temperature-heat relationship via the most general heat equation:

Thus, since Q was obtained from the previous problem, but the sign change because the released heat is now absorbed by the water, one can calculate the mass of water that rises from 20.0°C to 100.0°C with this heat:

Finally, we convert it to liters as required:

Learn more about calorimetry: brainly.com/question/1407669
Answer:
Hi
Explanation:
We assume you are converting between moles H2O and gram. You can view more details on each measurement unit: molecular weight of H2O or grams This compound is also known as Water or Dihydrogen Monoxide. The SI base unit for amount of substance is the mole. 1 mole is equal to 1 moles H2O, or 18.01528 grams.