By Gay Lussacs law you can find the pressure. First both temperatures of Celsius must change to Kelvin by adding 273. Temperature one will be 308K and temperature 2 will be 258K
With this info, you can now find the pressure with Lussacs law
P1 = P2
— —
T1 T2
Pressure 1 is given which is 32 psi so just plug it all in and find P2
32 = x
—— ——
308 258
308x = 8256 (Cross multiply)
X = 26.8 (divide both sides by 308)
Answer is 26.8 PSI
This makes sense because as temperature increases pressure increases, as well as when temperature decreases, pressure decreases. Since it’s a colder day the pressure will be lower.
<u>Answer:</u> The reaction proceeds in the forward direction
<u>Explanation:</u>
For the given chemical equation:

Relation of
is given by the formula:

where,
= equilibrium constant in terms of partial pressure = ?
= equilibrium constant in terms of concentration = 
R = Gas constant = 
T = temperature = ![35^oC=[35+273]K=308K](https://tex.z-dn.net/?f=35%5EoC%3D%5B35%2B273%5DK%3D308K)
= change in number of moles of gas particles = 
Putting values in above equation, we get:

is the constant of a certain reaction at equilibrium while
is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
The expression of
for above equation follows:

We are given:



Putting values in above equation, we get:

We are given:

There are 3 conditions:
- When
; the reaction is product favored. - When
; the reaction is reactant favored. - When
; the reaction is in equilibrium
As,
, the reaction will be favoring product side.
Hence, the reaction proceeds in the forward direction
Answer:
29,200 cal = 1.22 E 5 joules
Explanation:
hope this helps
Answer:
V₂ = 0.95 L
Explanation:
Given data:
Initial temperature of gas = 171.4 K
Final temperature of gas = 288.4 K
Final volume = 1.6 L
Initial volume = ?
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₁ = V₂T₁ /T₂
V₂ = 1.6 L × 171.4 K / 288.4 k
V₂ = 274.24 L.K / 288.4 K
V₂ = 0.95 L
M1 = 17.45 M
M2 = 0.83 M
V2 = 250 ml
M1. V1= M2. V2
V1 = (M2. V2)/M1 = (0.83× 250)/ 17.45= 11.89 ml