Answer:- 0.800 moles of the gas were collected.
Solution:- Volume, temperature and pressure is given for the gas and asks to calculate the moles of the gas.
It is an ideal gas law based problem. Ideal gas law equation is used to solve this. The equation is:
PV=nRT
Since it asks to calculate the moles that is n, so let's rearrange this for n:

V = 19.4 L
T = 17 + 273 = 290 K
P = 746 mmHg
we need to convert the pressure from mmHg to atm and for this we divide by 760 since, 1 atm = 760 mmHg

P = 0.982 atm
R = 
Let's plug in the values in the equation to get the moles.

n = 0.800 moles
So, 0.800 moles of the gas were collected.
Bzjnu8:i9.8&9olzlns soccer
Answer:
About 5 times faster.
Explanation:
Hello,
In this case, since the Arrhenius equation is considered for both the catalyzed reaction (1) and the uncatalized reaction (2), one determines the relationship between them as follows:

By replacing the corresponding values we obtain:

Such result means that the catalyzed reaction is about five times faster than the uncatalyzed reaction.
Best regards.
1 mole ----------- 6.02 x 10²³ atoms
? mole ---------- 24.08 x 10²³ atoms
moles B = ( 24.08 x 10²³) x 1 / 6.02 x 10²³
moles B = 24.08 x 10²³ / 6.02 x 10²³
= 4 moles
Answer B
hope this helps!
Answer:
F=ma
Explanation:
F=m×a
according to that F÷m=a and also F ÷a=m