Answer:
0.027 mole of NaOH.
Explanation:
We'll begin by obtaining the number of mole H2SeO4 in 45mL of 0.30M H2SeO4
This is illustrated below:
Molarity of H2SeO4 = 0.3M
Volume of solution = 45mL = 45/1000 = 0.045L
Mole of H2SeO4 =...?
Mole = Molarity x Volume
Mole of H2SeO4 = 0.3 x 0.045
Mole of H2SeO4 = 0.0135 mole
Next, the balanced equation for the reaction. This is given below:
H2SeO4 + 2NaOH –> Na2SeO4 + 2H2O
From the balanced equation above,
1 mole of H2SeO4 required 2 moles of NaOH.
Therefore, 0.0135 mole of H2SeO4 will require = 0.0135 x 2 = 0.027 mole of NaOH.
Therefore, 0.027 mole of NaOH is needed for the reaction.
Double reaction is the answer
Yes because water turns into vapor
If it is Mg2N2, and the limiting element is Mg, then the mass of Mg2N2 that can be produced is 50g/2 = 25 grams.
if it is Mg3N2, then the mass is 50/3 = 16.67grams.