1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UkoKoshka [18]
4 years ago
15

A converging-diverging nozzle is designed to operate with an exit Mach number of 1.75 . The nozzle is supplied from an air reser

voir at 5 MPa. Assuming one-dimensional flow, calculate the following: a. Maximum back pressure to choke the nozzle. b. Range of back pressures over which a normal shock will appear in the nozzle. c. Back pressure for the nozzle to be perfectly expanded to the design Mach number. d. Range of back pressures for supersonic flow at the nozzle exit plane.
Engineering
1 answer:
Flura [38]4 years ago
8 0

Answer:

a. 4.279 MPa

b. 3.198 MPa to 4.279 MPa

c. 0.939 MPa

d. Below 3.198 MPa

Explanation:

From the given parameters

M_{exit} = 1.75 MPa  

M at 1.6 MPa gives A_{exit}/A* = 1.2502

M at 1.8 MPa gives  A_{exit}/A* = 1.4390

Therefore, by interpolation, we have M_{exit} = 1.75 MPa  gives A

However, we shall use M_{exit} = 1.75 MPa and A

Similarly,

P_{exit}/P₀ = 0.1878

a) Where the nozzle is choked at the throat there is subsonic flow in the following diverging part of the nozzle. From tables, we have

A_{exit}/A* = 1.387. by interpolation M

Therefore P_{exit} = P₀ × P

Which shows that the nozzle is choked for back pressures lower than 4.279 MPa

b) Where there is a normal shock at the exit of the nozzle, we have;

M₁ = 1.75 MPa, P₁ = 0.1878 × 5 = 0.939 MPa

Where the normal shock is at M₁ = 1.75 MPa, P₂/P₁ = 3.406

Where the normal shock occurs at the nozzle exit, we have

P_b = 3.406\times 0.939 = 3.198 MPa

Where the shock occurs t the section prior to the nozzle exit from the throat, the back pressure was derived as P_b = 4.279 MPa

Therefore the back pressure value ranges from 3.198 MPa to 4.279 MPa

c) At M_{exit} = 1.75 MPa  and P

d) Where the back pressure is less than 3.198 MPa according to isentropic flow relations supersonic flow will exist at the exit plane    

You might be interested in
As car production became more efficient, cars became more affordable for american families. One result of this increase in autom
tankabanditka [31]

Answer:

IT IS SIMPLE LIKE HENRY FORD MADE THIS OPTION POSSIBLE

Explanation:

5 0
2 years ago
Air enters an adiabatic gas turbine at 1590 oF, 40 psia and leaves at 15 psia. The turbine efficiency is 80%, and the mass flow
melamori03 [73]

Answer:

a) 158.4 HP.

b) 1235.6 °F.

Explanation:

Hello there!

In this case, according to the given information, it turns out possible for us to set up an energy balance for the turbine's inlets and outlets:

m_{in}h_{in}=W_{out}+m_{out}h_{out}

Whereas the mass flow is just the same, which means we have:

W_{out}=m_{out}(h_{out}-h_{in})

And the enthalpy and entropy of the inlet stream is obtained from steam tables:

h_{in}=1860.7BTU/lbm\\\\s_{in}= 2.2096BTU/lbm-R

Now, since we assume the 80% accounts for the isentropic efficiency for this adiabatic gas turbine, we assume the entropy is constant so that:

s_{out}= 2.2096BTU/lbm-R

Which means we can find the temperature at which this entropy is exhibited at 15 psia, which gives values of temperature of 1200 °F (s=2.1986 BTU/lbm-K) and 1400 °F (s=2.2604 BTU/lbm-K), and thus, we interpolate for s=2.2096 to obtain a temperature of 1235.6 °F.

Moreover, the enthalpy at the turbine's outlet can be also interpolated by knowing that at 1200 °F h=1639.8 BTU/lbm and at 1400 °F h=174.5 BTU/lbm, to obtain:

h_{out}=1659.15BUT/lbm

Then, the isentropic work (negative due to convention) is:

W_{out}=2500lbm/h(1659.15BUT/lbm-1860.7BUT/lbm)\\\\W_{out}=-503,875BTU

And the real produced work is:

W_{real}=0.8*-503875BTU\\\\W_{real}=-403100BTU

Finally, in horsepower:

W_{real}=-403100BTU/hr*\frac{1HP}{2544.4336BTU/hr} \\\\W_{real}=158.4HP

Regards!

6 0
3 years ago
What's the real power if Vrms = 100V, Irms = 2A, and the circuit has a power factor of 0.8?
Temka [501]

Answer:

  160 W

Explanation:

The relation is ...

  Real Power = (pf)(V)(A)

  = 0.8(100)(2) = 160 . . . . watts

7 0
3 years ago
Which of the following is an example of a hardwood? A maple B spruce C pine D fir
bearhunter [10]

Answer:

A. Maple

Explanation:

Maple is a hardwood.

Hope that helps!

7 0
2 years ago
A manufacturing process that unintentionally introduces cracks to the surface of a part was used to produce load-bearing compone
ElenaW [278]
You connect the motherboard to the astronomical blow up device
5 0
3 years ago
Other questions:
  • The human circulatory system consists of a complex branching pipe network ranging in diameter from
    10·1 answer
  • A vehicle is considered to be legally parked if it is parked _____ or more from a pedestrian crosswalk or a marked or unmarked i
    15·1 answer
  • Uma fábrica de microcomputadores produz dois modelos A e B. O modelo a fornece um lucro de R$ 180,00 e o B de R$ 300,00. O model
    15·1 answer
  • The wheel and axle is a special type of:<br><br> inclined plane<br> wedge<br> lever<br> screw
    14·2 answers
  • Which of the following best describes solids liquids and gases
    13·1 answer
  • A detailed image of a brain scan with height, width, and depth is an example of a(n) 3D _________ model.
    15·1 answer
  • The stagnation chamber of a wind tunnel is connected to a high-pressure airbottle farm which is outside the laboratory building.
    11·1 answer
  • Find the volume of water displaced and position of center of buoyancy for a wooden block of width 2.5m and of depth 1.5m. When i
    14·1 answer
  • What precautions should be taken to avoid the overloading of domestic electric circuits.
    13·1 answer
  • (20%) machining appears to play an important role in the manufacturing of this phone housing, but machining is a relatively slow
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!