1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UkoKoshka [18]
4 years ago
15

A converging-diverging nozzle is designed to operate with an exit Mach number of 1.75 . The nozzle is supplied from an air reser

voir at 5 MPa. Assuming one-dimensional flow, calculate the following: a. Maximum back pressure to choke the nozzle. b. Range of back pressures over which a normal shock will appear in the nozzle. c. Back pressure for the nozzle to be perfectly expanded to the design Mach number. d. Range of back pressures for supersonic flow at the nozzle exit plane.
Engineering
1 answer:
Flura [38]4 years ago
8 0

Answer:

a. 4.279 MPa

b. 3.198 MPa to 4.279 MPa

c. 0.939 MPa

d. Below 3.198 MPa

Explanation:

From the given parameters

M_{exit} = 1.75 MPa  

M at 1.6 MPa gives A_{exit}/A* = 1.2502

M at 1.8 MPa gives  A_{exit}/A* = 1.4390

Therefore, by interpolation, we have M_{exit} = 1.75 MPa  gives A

However, we shall use M_{exit} = 1.75 MPa and A

Similarly,

P_{exit}/P₀ = 0.1878

a) Where the nozzle is choked at the throat there is subsonic flow in the following diverging part of the nozzle. From tables, we have

A_{exit}/A* = 1.387. by interpolation M

Therefore P_{exit} = P₀ × P

Which shows that the nozzle is choked for back pressures lower than 4.279 MPa

b) Where there is a normal shock at the exit of the nozzle, we have;

M₁ = 1.75 MPa, P₁ = 0.1878 × 5 = 0.939 MPa

Where the normal shock is at M₁ = 1.75 MPa, P₂/P₁ = 3.406

Where the normal shock occurs at the nozzle exit, we have

P_b = 3.406\times 0.939 = 3.198 MPa

Where the shock occurs t the section prior to the nozzle exit from the throat, the back pressure was derived as P_b = 4.279 MPa

Therefore the back pressure value ranges from 3.198 MPa to 4.279 MPa

c) At M_{exit} = 1.75 MPa  and P

d) Where the back pressure is less than 3.198 MPa according to isentropic flow relations supersonic flow will exist at the exit plane    

You might be interested in
Explain why the following scenario fails to meet the criteria for proper reverse engineering.
avanturin [10]

Answer:

he must document or remember the order he took it apart so he put it back together

Explanation:

5 0
2 years ago
Sometimes, steel studs may not be used on outside walls because they are?
Helen [10]

Answer:

We can describe 15×-10 as an expression. we would describe 6×-2< 35 as an...

Explanation:

We can describe 15×-10 as an expression. we would describe 6×-2< 35 as an...

6 0
3 years ago
A monatomic ideal gas undergoes a quasi-static process that is described by the function p(????)=p1+3(????−????1) , where the st
Alenkasestr [34]

A pure gas made up only of atoms. The noble gases argon, krypton, and xenon are some examples.

Concepts:

Perfect gas law: Work performed on the system: PV = nRT W = -∫PdV

Energy preservation formula: U = Q + W

Reasoning:

W = nRT ln(Vi/Vf) when the process is isothermal.

The temperature is said to be constant, and we are given n, Pfinal, and Vfinal.

Calculation information:

(A) A process that is isothermal has a constant temperature.

PV = nRT, and hence, constant

nRT = PV = 101000 Pa*25*10-3 m3

For a process that is isothermal, W = nRT ln(Vi/Vf).

W/(nRT)=3000 J/(101000 Pa*25*10-3 m3)=-1.19

(The gas produces -W of labor.)

Vi = (25*10-3 m3)/3.28 = 7.62*10-3 m3 = 7.62 L where Vf/Vi = exp(1.19) = 3.28 Vi (b) for a perfect gas PV = nRT. 101000 Pa*25*10-3 m3 = (8.31 J/K) T. T = 303.85 K.

To know more about process click here:

brainly.com/question/29310303

#SPJ4

5 0
1 year ago
When block C is in position xC = 0.8 m, its speed is 1.5 m/s to the right. Find the velocity of block A at this instant. Note th
Amanda [17]

Answer:

The answer is "2 m/s".

Explanation:

The triangle from of the right angle:

\to (x_c-0.8)+(1.5+y_4) +\sqrt{x_c^2 + 1.5^2}= constant

Differentiating the above equation:

\to V_c +V_A+ \frac{X_cV_c}{\sqrt{x_c^2 +1}}=0\\\\\to 1-V_A+ \frac{0.8 \times 1.5}{\sqrt{ 0.8^2+1.5}}=0\\\\

\to V_A=  \frac{1.2}{\sqrt{ 0.64+1.5}}+1\\\\

        = \frac{1.2}{ 1.46}+1\\\\= \frac{1.2+ 1.46}{ 1.46}\\\\ = \frac{2.66}{1.46}\\\\= 1.82 \ \frac{m}{s}\\\\= 2 \ \frac{m}{s}

3 0
3 years ago
Steam at 20 bars is in the saturated vapor state (call this state 1) and contained in a pistoncylinderdevice with a volume of 0.
saul85 [17]

Answer:

Explanation:

Given that:

<u>At state 1:</u>

Pressure P₁ = 20 bar

Volume V₁ = 0.03 \mathbf{m^{3}}

From the tables at saturated vapour;

Temperature T₁ = 212.4⁰ C  ; v_1 = vg_1 = 0.0996 \mathbf{m^{3}} / kg

The mass inside the cylinder is m = 0.3 kg, which is constant.

The specific internal energy u₁ = ug₁ = 2599.2 kJ/kg

<u>At state 2:</u>

Temperature T₂ = 200⁰ C

Since the 1 - 2 occurs in an isochoric process v₂ = v₁ = 0.099 \mathbf{m^{3}} / kg

From temperature T₂ = 200⁰ C

v_f_2 = 0.0016 \ m^3/kg  

vg_2 = 0.127 \ m^3/kg  

Since  vf_2 < v_2 , the saturated pressure at state 2 i.e. P₂ = 15.5 bar

Mixture quality x_2 = \dfrac{v_2-vf_2}{vg_2 -vf_2}

x_2 = \dfrac{(0.099-0.0016)m^3/kg}{(0.127 -0.0016) m^3/kg}

x_2 = \dfrac{(0.0974)m^3/kg}{(0.1254) m^3/kg}

\mathsf{x_2 =0.78}

At temperature T₂, the specific internal energy u_f_2 = 850.6 \ kJ/kg , also ug_2 = 2594.3 \ kJ/kg

Thus,

u_2 = uf_2 + x_2 (ug_2 -uf_2)

u_2 =850.6  +0.78 (2594.3 -850.6)

u_2 =850.6  +1360.086

u_2 =2210.686 \ kJ/kg

<u>At state 3:</u>

Temperature T_3=T_2 = 200 ^0 C ,

V_3 = 2V_1 = 0.06 \ m^3

Specific volume v_3 = 0.2  \ m^3/kg

Thus; vg_3 =vg_2 = 0.127 \ m^3/kg ,

SInce v_3 > vg_3, therefore, the phase is in a superheated vapour state.

From the tables of superheated vapour tables; at v_3 = 0.2  \ m^3/kg and T₃ = 200⁰ C

The pressure = 10 bar and v =0.206 \ m^3/kg

The specific internal energy u_3 at the pressure of 10 bar = 2622.3 kJ/kg

The changes in the specific internal energy is:

u_2-u_1

= (2210.686 - 2599.2) kJ/kg

= -388.514 kJ/kg

≅ - 389 kJ/kg

u_3-u_2

= (2622.3 - 2210.686)  kJ/kg

= 411.614 kJ/kg

≅ 410 kJ/kg  

We can see the correct sketches of the T-v plot showing the diagrammatic expression in the image attached below.

3 0
3 years ago
Other questions:
  • Describe the meaning of the different symbols and abbreviations found on the drawings/documents that they use (such as BS8888, s
    12·1 answer
  • a. Determine R for a series RC high-pass filter with a cutoff frequency (fc) of 8 kHz. Use a 100 nF capacitor. b. Draw the schem
    7·1 answer
  • Can the United States defeat Iranian forces
    9·2 answers
  • Carnot heat engine A operates between 20ºC and 520ºC. Carnot heat engine B operates between 20ºC and 820ºC. Which Carnot heat en
    5·1 answer
  • A rectangular channel 2 m wide carries 3 m3 /s of water at a depth of 1.2 m. If an obstruction 40 cm wide is placed in the middl
    12·1 answer
  • Hiiiiiiiii<br> jhajwjne f f g. g g tnnjzjnsnsnend f najjwne d f nskiaksjsjsjksm
    5·1 answer
  • Air is compressed steadily from 100kPa and 20oC to 1MPa by an adiabatic compressor. If the mass flow rate of the air is 1kg/s an
    12·1 answer
  • Order of Design Process steps ?
    13·1 answer
  • A cyclic tensile load ranging from 0 kN to 55 kN force is applied along the length of a 100 mm long bar with a 15 mm x 15 mm squ
    14·1 answer
  • A parallel circuit has a resistance of 280 and an inductive reactance of 360 02. What's this circuit's impedance?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!