Answer:
The temperature required is near about 3 million kelvin
Explanation:
The brilliance of the star results from the nuclear reaction that take place in the core of the star and radiate a huge amount of thermal energy resulting from the fusion of hydrogen into helium.
For this reaction to take place, the temperature of the star's core must be near about 3 million kelvin.
The hydrogen atoms collide and starts and the energy from the collision results in the heating of the gas cloud. As the temperature comes to near about
, the nuclear fusion reaction takes place in the core of the gas cloud.
The huge amount of thermal energy from the nuclear reaction gives the gas cloud a brilliance resulting in a protostar.
A geologist is studying rock layers in an old river bed, and he finds a fossil of a fish and a horsetail rush in the same rock layer. According to the law of faunal and floral succession, the geologist can assume that the rock containing the fossils may date back as far as the <span>Devonian period</span>.
The first thing you should know for this case is that density is defined as the quotient between mass and volume:
D = M / V
In addition, you should keep in mind the following conversion:
1Kg = 1000g
Substituting the values we have:
D = (23.0 * 1000) / (2920) = 7.88 g / cm ^ 3
answer
the density of the iron plate is 7.88 g / cm ^ 3
Answer:
h = 3.1 cm
Explanation:
Given that,
The volume of a oil drop, V = 10 m
Radius, r = 10 m
We need to find the thickness of the film. The film is in the form of a cylinder whose volume is as follows :

So, the thickness of the film is equal to 3.1 cm.