Because Boron likes to lose 3 electrons when it undergoes ionization, we draw a boron ion like a helium atom, with just 2 electrons in the first shell, and 0 in the second
Answer:
Balancing Nuclear Equations
To balance a nuclear equation, the mass number and atomic numbers of all particles on either side of the arrow must be equal.
Explanation:
follows:
6
3
Li
+
2
1
H
→
4
2
He
+
?
To balance the equation above for mass, charge, and mass number, the second nucleus on the right side must have atomic number 2 and mass number 4; it is therefore also helium-4. The complete equation therefore reads:
6
3
Li
+
2
1
H
→
4
2
He
+
4
2
He
Or, more simply:
6
3
Li
+
2
1
H
→
2
4
2
He
image
Lithium-6 plus deuterium gives two helium-4s.: The visual representation of the equation we used as an example.
Compact
In the reaction 2co ( g) + o2( g) → 2co2( g), the ratio of moles of oxygen used to moles of co2produced is 1:2.
According to Boyle's Law, P1V1 = P2V2
where P1 and V1 are initial pressure and volume respectively. P2 and V2 are final pressure and volume receptively.
Given: P2 = 4 P1 and V1 = 10.0l
∴ V2 = 2.5 l
Answer: Final volume of system is 2.5 l
<u>Answer:</u> The experimental van't Hoff factor is 1.21
<u>Explanation:</u>
The expression for the depression in freezing point is given as:

where,
i = van't Hoff factor = ?
= depression in freezing point = 0.225°C
= Cryoscopic constant = 1.86°C/m
m = molality of the solution = 0.100 m
Putting values in above equation, we get:

Hence, the experimental van't Hoff factor is 1.21