To determine the empirical formula and the molecular formula of the compound, we assume a basis of the compound of 100 g. We do as follows:
Mass Moles
K 52.10 52.10/39.10 = 1.33 1.33/1.32 ≈ 1
C 15.8 15.8/12 = 1.32 1.32/1.32 ≈ 1
O 32.1 32.1 / 16 = 2.01 2.01/1.32 ≈ 1.5
The empirical formula would most likely be KCO.
The molecular formula would be K2C2O3.
1. D)
2. I think the correct answer from the choices listed above is option C. The tools that <span>should
be used to record the most complete data about a gas are a manometer
and a thermometer. Pressure and temperature are important measurements
for a gas since from these data we can calculate any other properties of
the gas.</span>
Answer:
The number of formula units in 3.81 g of potassium chloride (KCl) is approximately 3.08 × 10²²
Explanation:
The given parameters is as follows;
The mass of potassium chloride produced in the chemical reaction (KCl) = 3.81 g
The required information = The number of formula units of potassium chloride (KCl)
The Molar Mass of KCl = 74.5513 g/mol

Therefore, we have;

1 mole of a substance, contains Avogadro's number (6.022 × 10²³) of formula units
Therefore;
0.051106 moles of KCl contains 0.051106 × 6.022 × 10²³ ≈ 3.077588 × 10²² formula units
From which we have, the number of formula units in 3.81 g of potassium chloride (KCl) ≈ 3.08 × 10²² formula units.
The oxidation number of chlorine in the Cl-<span> ion is -1.</span>