The volume of the buffer solution having a ph value is calculated by henderson's hasselbalch equation.
Buffer solution is water based solution which consists of a mixture containing a weak acid and a conjugate base of the weak acid. or a weak base and conjugate acid of a weak base.it is a mixture of weak acid and a base. The pH of the buffer solution is determined by the expression of the henderson hasselbalch equation.
pH=pKa + log [salt]/[acid]
Where, pKa =dissociation constant , A- = concentration of the conjugate base, [HA]= concentration of the acid. Here, a buffer solution contains 0.403m acetic acid and 250 ml is added in order to prepare a buffer with a ph of 4.750. Putting all the values in the henderson hasselbalch equation we find the pH of the buffer solution.
To learn more about hendersons hasselbalch equation please visit:
brainly.com/question/13423434
#SPJ4
Answer : The new pressure if the volume changes to 560.0 mL is, 280 mmHg
Explanation :
According to the Boyle's, law, the pressure of the gas is inversely proportional to the volume of gas at constant temperature and moles of gas.

or,

where,
= initial pressure = 560.00 mmHg
= final pressure = ?
= initial volume = 280 mL
= final volume = 560.0 mL
Now put all the given values in the above formula, we get:


Therefore, the new pressure if the volume changes to 560.0 mL is, 280 mmHg
1. Double replacement (DR)
2. Decomposition (D)
<h3>Further explanation</h3>
1. Al2(SO4)3 + Ca3(PO4)2 -> 2AIPO4 + 3CaSO4
Double replacement (DR) : there is an ion exchange between two ion compounds in the reactant to form two new ion compounds in the product
General form :
AB + CD -> AD + CB
2. 2NaCIO3 → 2NaCl + 3O2
Decomposition (D) : Reactant breakdown into simpler ones(reverse of combination)
General form :
AB ---> A + B
Answer:
1. 0.02 M
2. 0.01 M
3. 4×10⁻⁶
Explanation:
We know that V₁S₁ = V₂S₂
1.
Concentration of HCl = 0.05 M
end point comes at = 10 ml
So, concentration of OH⁻(aq) = [OH⁻(aq)] ⇒ (0.05 × 10) ÷ 25 ⇒ 0.02 M
2.
2mol of OH⁻(aq) ≡ 1 mole of Ca²⁺(aq)
[Ca²⁺] = 0.02 ÷ 2 = 0.01 M
3.
= [Ca²⁺(aq)] [OH⁻(aq)]²
Ca(OH)₂ (aq) ⇄ Ca²⁺ (aq) + 2OH⁻ (aq)
= [0.01 × (0.02)²] = 4×10⁻⁶
4.
If reaction is exothermic which means heat energy will get evolved as a result temperature of the reaction media will get increased during the course of the reaction. If temperature is externally increased, the reaction will go backward to accumulate extra heat energy.
5.
value describes the solubility of a particular ionic compound. The higher the
value, the higher the Solubility will be.
6.
This may be due to uncommon ion effect. The process of other ions (K⁺ or Na⁺) may increase the solubility