An atom consist of mainly two parts, namely nucleus and electrons. In the nucleus, there are groups of protons and neutron DENSELY packed, each element has its own atomic number(number of protons) but can have different no. of neutron (isotop). within the proton and neutron, there are subatomic particles called quarks. Talking about the electrons, they move very quickly arround the nucleus and there are different energy level for electron to switch between. In chemical reaction, we are only concerning the no. of valence electrons.
Can you follow me and like me please?
Explanation:
The given data is as follows.
Solvent 1 = benzene, Solvent 2 = water
= 2.7,
= 100 mL
= 10 mL, weight of compound = 1 g
Extract = 3
Therefore, calculate the fraction remaining as follows.
![f_{n} = [1 + K_{p}(\frac{V_{S_{2}}}{V_{S_{1}}})]^{-n}](https://tex.z-dn.net/?f=f_%7Bn%7D%20%3D%20%5B1%20%2B%20K_%7Bp%7D%28%5Cfrac%7BV_%7BS_%7B2%7D%7D%7D%7BV_%7BS_%7B1%7D%7D%7D%29%5D%5E%7B-n%7D)
= ![[1 + 2.7(\frac{100}{10})]^{-3}](https://tex.z-dn.net/?f=%5B1%20%2B%202.7%28%5Cfrac%7B100%7D%7B10%7D%29%5D%5E%7B-3%7D)
= 
= 
Hence, weight of compound to be extracted = weight of compound - fraction remaining
= 1 - 
= 0.00001
or, = 
Thus, we can conclude that weight of compound that could be extracted is
.
I believe that this atom is chlorine and the atom has an overall charge of zero.
Chlorine is chemical element which is atomic number 17 in the periodic table. Each chlorine atom has 17 protons (positively charged) in the nucleus balanced by 17 electrons (negatively charged) in the energy shells ( thus an overall charge of zero)
A homogenous mixture is uniform and thus hard to recognize as a mixture. An example is water.