Answer:
★The second law of refraction
The ratio of sine of angle of incidence to the sine of angle of refraction is a constant for a light of given colour and for a given pair of media. This law is also called Snell's law of refraction. If 'i' is the angle of incidence and 'r' is the angle of refraction then, Sin i/Sin r = constant
This constant value is called the refractive index of the second medium with respect to the first.
Answer:
TERMINUS ANTE QUEM
Explanation: Terminus ante quem is an Archeological an a Latin term used to describe the date before which an event or events took place,it is also used to show the date before which Archeological works have been deposited in a given area.
Example, a pottery dating to the 4th century AD found on a surface would give that pottery with a terminus ante quem of the 4thcentury AD.
This type of cross dating can either be TERMINUS ANTE QUEM OR TERMINUS POST QUEM.
Yes
The earthquakes in the san andrais fault line are one of the most dangerous.
Before we find impulse, we need to find the initial and final momentum of the ball.
To find the momentum of the ball before it hit the floor, we need to figure out its final velocity using kinematics.
Values we know:
acceleration(a) - 9.81m/s^2 [down]
initial velocity(vi) - 0m/s
distance(d) - 1.25m [down]
This equation can be used to find final velocity:
Vf^2 = Vi^2 + 2ad
Vf^2 = (0)^2 + (2)(-9.81)(-1.25)
Vf^2 = 24.525
Vf = 4.95m/s [down]
Now we need to find the velocity the ball leaves the floor at using the same kinematics concept.
What we know:
a = 9.81m/s^2 [down]
d = 0.600m [up]
vf = 0m/s
Vf^2 = Vi^2 + 2ad
0^2 = Vi^2 + 2(-9.81)(0.6)
0 = Vi^2 + -11.772
Vi^2 = 11.772
Vi = 3.43m/s [up]
Now to find impulse given to the ball by the floor we find the change in momentum.
Impulse = Momentum final - momentum initial
Impulse = (0.120)(3.43) - (0.120)(-4.95)
Impulse = 1.01kgm/s [up]
Answer: A hot lightbulb gave off white visible light instead of ultraviolet light.
Explanation: