The correct answer is: Velocity
Answer:
m/s
Explanation:
Assumption: bullet leaves the muzzle at a speed of V m/s
and velocity of push received by the man be v m/s
According to newton's third law to every action there is always an equal and opposite reaction.
therefore,
mass of man× velocity = mass of bullet×its velocity
⇒70×v= 10×10^-3 ×V
solving the above eqaution we get
therefore
m/s
Explanation:
Remember Newton's Second Law.

If the force acting on both bikers is the same, we can look at the relationship between acceleration and mass.
If Biker 1 has a mass of 10kg and Biker 2 has a mass of 20kg, and both are being acted upon by a force of 100 N, let's see what that looks like. 

So, given the same force, an object with GREATER mass will have less acceleration.
Answer:

Explanation:
This is a projectile motion problem. We will first separate the motion into x- and y-components, apply the equations of kinematics separately, then we will combine them to find the initial velocity.
The initial velocity is in the x-direction, and there is no acceleration in the x-direction.
On the other hand, there no initial velocity in the y-component, so the arrow is basically in free-fall.
Applying the equations of kinematics in the x-direction gives

For the y-direction gives

Combining both equation yields the y_component of the final velocity

Since we know the angle between the x- and y-components of the final velocity, which is 180° - 2.8° = 177.2°, we can calculate the initial velocity.
