Answer:
one billion to ten billion joules.
Explanation:
To keep a 100-watt light bulb going for one second, one hundred joules of energy will be used.
The slope of the line is
(change in ' y ' between the ends) / (change in ' x ' between the ends)
Slope = (630g - 0) / (70 cm^3 - 0)
Slope = (630 / 70) g/cm^3
<em>Slope = 9.0 g/cm^3</em>
First
let us imagine the projectile launched at initial velocity V and at angle
θ relative to the horizontal. (ignore wind resistance)
Vertical component y:
The
initial vertical velocity is given as Vsinθ
The moment the projectile reaches the maximum
height of h, the vertical velocity
will be 0, therefore the time t taken to attain this maximum height is:
h = Vsinθ - gt
0 = Vsinθ - gt
t = (Vsinθ)/g
where
g is acceleration due to gravity
Horizontal component x:
The initial horizontal velocity is given as Vcosθ. However unlike
the vertical component, this horizontal velocity remains constant because this is unaffected by gravity. The time to travel the
horizontal distance D is twice the value of t times the horizontal velocity.
D = Vcosθ*[(2Vsinθ)/g]
D = (2V²sinθ cosθ)/g
D = (V²sin2θ)/g
In order for D (horizontal distance) to be
maximum, dD/dθ = 0
That is,
2V^2 cos2θ / g = 0
And since 2V^2/g must not be equal to zero, therefore cos(2θ) = 0
This is true when 2θ = π/2 or θ = π/4
Therefore it is now<span> shown that the maximum horizontal travelled is attained when
the launch angle is π/4 radians, or 45°.</span>
2m/s because the hockey puck is traveling at a constant speed ( acceleration is 0 ). Unless something acts on the hockey puck it will travel 2 m/s forever.
Answer:
First, the different indices of refraction must be taken into account (in different media): for example, the refractive index of light in a vacuum is 1 (since vacuum = c). The value of the refractive index of the medium is a measure of its "optical density": Light spreads at maximum speed in a vacuum but slower in others transparent media; therefore in all of them n> 1. Examples of typical values of are those of air (1,0003), water (1.33), glass (1.46 - 1.66) or diamond (2.42).
The refractive index has a maximum value and a minimum value, which we can calculate the minimum value by means of the following explanation:
The limit or minimum angle, α lim, is defined as the angle of refraction from which the refracted ray disappears and all the light is reflected. As in the maximum value of angle of refraction, from which everything is reflected, is βmax = 90º, we can know the limit angle (the minimum angle that we would have to have to know the minimum index of refraction) by Snell's law:
βmax = 90º ⇒ n 1x sin α (lim) = n 2 ⇒ sin α lim = n 2 / n 1
Explanation:
When a light ray strikes the separation surface between two media different, the incident beam is divided into three: the most intense penetrates the second half forming the refracted ray, another is reflected on the surface and the third is breaks down into numerous weak beams emerging from the point of incidence in all directions, forming a set of stray light beams.