Answer:
c
Explanation:
if someone is wrong that they can help with
Answer:3.47 m
Explanation:
Given
Temperature(T)=300 K
velocity(v)=1.5 m/s
At 300 K


And reynold's number is given by



x=3.47 m
Answer:
minimum electric power consumption of the fan motor is 0.1437 Btu/s
Explanation:
given data
area = 3 ft by 3 ft
air density = 0.075 lbm/ft³
to find out
minimum electric power consumption of the fan motor
solution
we know that energy balance equation that is express as
E in - E out =
......................1
and at steady state
= 0
so we can say from equation 1
E in = E out
so
minimum power required is
E in = W = m
=
put here value
E in =
E in =
E in = 0.1437 Btu/s
minimum electric power consumption of the fan motor is 0.1437 Btu/s
Question:
The question is not complete. See the complete question and the answer below.
A well that pumps at a constant rate of 0.5m3/s fully penetrates a confined aquifer of 34 m thickness. After a long period of pumping, near steady state conditions, the measured drawdowns at two observation wells 50m and 100m from the pumping well are 0.9 and 0.4 m respectively. (a) Calculate the hydraulic conductivity and transmissivity of the aquifer (b) estimate the radius of influence of the pumping well, and (c) calculate the expected drawdown in the pumping well if the radius of the well is 0.4m.
Answer:
T = 0.11029m²/sec
Radius of influence = 93.304m
expected drawdown = 3.9336m
Explanation:
See the attached file for the explanation.