Answer:
72.53 mi/hr
Explanation:
From the question given above, the following data were obtained:
Vertical distance i.e Height (h) = 8.26 m
Horizontal distance (s) = 42.1 m
Horizontal velocity (u) =?
Next, we shall determine the time taken for the car to get to the ground.
This can be obtained as follow:
Height (h) = 8.26 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
8.26 = ½ × 9.8 × t²
8.26 = 4.9 × t²
Divide both side by 4.9
t² = 8.26 / 4.9
Take the square root of both side by
t = √(8.26 / 4.9)
t = 1.3 s
Next, we shall determine the horizontal velocity of the car. This can be obtained as follow:
Horizontal distance (s) = 42.1 m
Time (t) = 1.3 s
Horizontal velocity (u) =?
s = ut
42.1 = u × 1.3
Divide both side by 1.3
u = 42.1 / 1.3
u = 32.38 m/s
Finally, we shall convert 32.38 m/s to miles per hour (mi/hr). This can be obtained as follow:
1 m/s = 2.24 mi/hr
Therefore,
32.38 m/s = 32.38 m/s × 2.24 mi/hr / 1 m/s
32.38 m/s = 72.53 mi/hr
Thus, the car was moving at a speed of
72.53 mi/hr.
The forces of gravity between two objects are inversely proportional to
the square of the distance between them. So reducing the distance
by 1/2 means increasing the gravitational force by 2² = 4 times.
The 1 million newtons becomes 4 million newtons.
Note that this does NOT mean the satellite's altitude above the surface.
When you're calculating gravitational forces, it's the distance between
the centers of the objects. So the question is a meaningful exercise
only if we use the distance between the satellite and the planet's center.
Answer:
neutron.
Explanation:
subatomic particles include,
neutron.
proton.
electron.
hope it helps. :)
Answer:
All these laws give the relationship between two quantities of the gas among V (volume), p (pressure) and T (temperature), keeping the third one constant - however the two quantities change for each law
Explanation:
Calling:
p = gas pressure
V = gas volume
T = gas temperature (in Kelvin)
We have:
- Boyle's law: the pressure and the volume of a gas kept at constant temperature are inversely proportional. Mathematically,

- Charles's law: the temperature and the volume of a gas kept at constant pressure are directly proportional. Mathematically,

- Gay Lussac's law: the temperature and the pressure of a gas kept at constant volume are directly proportional. Mathematically,

sorry i think so i dont exactly know i am sorry
Explanation: