1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yuradex [85]
3 years ago
13

4. Lockout/tagout (LOTO) is a safety procedure that ensures dangerous machines are properly shut off and not started up again pr

ior to the completion of maintenance or servicing work?
A) True
b) False
Engineering
1 answer:
klemol [59]3 years ago
5 0

Answer:true

Explanation:

You might be interested in
A welding rod with κ = 30 (Btu/hr)/(ft ⋅ °F) is 20 cm long and has a diameter of 4 mm. The two ends of the rod are held at 500 °
SOVA2 [1]

Answer:

In Btu:

Q=0.001390 Btu.

In Joule:

Q=1.467 J

Part B:

Temperature at midpoint=274.866 C

Explanation:

Thermal Conductivity=k=30  (Btu/hr)/(ft ⋅ °F)= \frac{30}{3600} (Btu/s)/(ft.F)=8.33*10^{-3}  (Btu/s)/(ft.F)

Thermal Conductivity is SI units:

k=30(Btu/hr)/(ft.F) * \frac{1055.06}{3600*0.3048*0.556} \\k=51.88 W/m.K

Length=20 cm=0.2 m= (20*0.0328) ft=0.656 ft

Radius=4/2=2 mm =0.002 m=(0.002*3.28)ft=0.00656 ft

T_1=500 C=932 F

T_2=50 C= 122 F

Part A:

In Joules (J)

A=\pi *r^2\\A=\pi *(0.002)^2\\A=0.00001256 m^2

Heat Q is:

Q=\frac{k*A*(T_1-T_2)}{L} \\Q=\frac{51.88*0.000012566*(500-50}{0.2}\\ Q=1.467 J

In Btu:

A=\pi *r^2\\A=\pi *(0.00656)^2\\A=0.00013519 m^2

Heat Q is:

Q=\frac{k*A*(T_1-T_2)}{L} \\Q=\frac{8.33*10^{-3}*0.00013519*(932-122}{0.656}\\ Q=0.001390 Btu

PArt B:

At midpoint Length=L/2=0.1 m

Q=\frac{k*A*(T_1-T_2)}{L}

On rearranging:

T_2=T_1-\frac{Q*L}{KA}

T_2=500-\frac{1.467*0.1}{51.88*0.00001256} \\T_2=274.866\ C

4 0
2 years ago
The drag coefficient of a car at the design conditions of 1 atm, 25°C, and 90 km/h is to be determined experimentally in a large
SIZIF [17.4K]

Answer: 0.288

Explanation:

Given

Pressure of the car, P = 1 atm

Temperature of the car, T = 25° C

Speed of the car, v = 90 km/h = 90*1000/3600 = 25 m/s

Height of the car, h = 1.25 m

Width of the car, b = 1.65 m

Force acting on the far, F = 220 N

Drag coefficient, C(d) = ?

Using our table A-9, we can trace that the density of air ρ, at the given temperature and pressure of 25 °C and 1 atm, is 1.184 kg/m³

Area = h *b

Area = 1.25 * 1.65

Area = 2.0625 m²

Now we solve for the drag coefficient using the formula

C(d) = F / (1/2 * ρ * A * v²)

C(d) = 220 / (0.5 * 1.184 * 2.0625 * 25²)

C(d) = 220 / (1.221 * 625)

C(d) = 220 / 763.125

C(d) = 0.288

Therefore, the drag coefficient is 0.288

3 0
2 years ago
Suppose a large amount of power is required. Which engine would you choose between Otto and Diesel? Why?
Firdavs [7]

Answer:

Otto engine

Explanation:

As we know that

Power = Torque x speed

So we can say that when speed of engine then power of engine also will increases.

The speed of Otto engine is more as compare to Diesel engine so the power of Otto engine is more.But on the other hand torque of Diesel engine is more as compare to Otto engine but the speed is low so the product of speed and torque is more for Otto engine .It means that when requires large amount of power then Otto engine should be use.

6 0
3 years ago
Consider a mixing tank with a volume of 4 m3. Glycerinflows into a mixing tank through pipe A with an average velocity of 6 m/s,
Svetach [21]

This question is incomplete, the complete question as well as the missing diagram is uploaded below;

Consider a mixing tank with a volume of 4 m³. Glycerin flows into a mixing tank through pipe A with an average velocity of 6 m/s, and oil flow into the tank through pipe B at 3 m/s. Determine the average density of the mixture that flows out through the pipe at C. Assume uniform mixing of the fluids occurs within the 4 m³ tank.

Take p_o = 880 kg/m³ and p_{glycerol = 1260 kg/m³    

 

Answer:

the average density of the mixture that flows out through the pipe at C is 1167.8 kg/m³  

Explanation:

Given that;

Inlet velocity of Glycerin, V_A = 6 m/s

Inlet velocity of oil, V_B = 3 m/s  

Density velocity of glycerin, p_{glycerol = 1260 kg/m³

Density velocity of glycerin, Take p_o = 880 kg/m³

Volume of tank V = 4 m

from the diagram;

Diameter of glycerin pipe, d_A = 100 mm = 0.1 m

Diameter of oil pipe, d_B = 80 mm = 0.08 m

Diameter of outlet pipe d_C = 120 mm = 0.12 m

Now, Appling the discharge flow equation;

Q_A + Q_B = Q_C

A_Av_A + A_Bv_B = A_Cv_C

π/4 × (d_A)²v_A + π/4 × (d_B )²v_B = π/4 × (d_C)²v_C

we substitute

π/4 × (0.1 )² × 6 + π/4 × (0.08 )² × 3 = π/4 × (0.12)²v_C

0.04712 + 0.0150796 = 0.0113097v_C

0.0621996 = 0.0113097v_C

v_C = 0.0621996 / 0.0113097

v_C  = 5.5 m/s

Now we apply the mass flow rate condition

m_A + m_B = m_C

p_{glycerin}A_Av_A + p_0A_Bv_B = pA_Cv_C  

so we substitute

1260 × π/4 × (0.1 )² × 6 + 880 × π/4 × (0.08 )² × 3 = p × π/4 × (0.12)² × 5.5

1260 × 0.04712 + 880 × 0.0150796 = p × 0.06220335

59.3712 + 13.27 = 0.06220335p  

72.6412 = 0.06220335p    

p = 72.6412 / 0.06220335

p =  1167.8 kg/m³  

Therefore, the average density of the mixture that flows out through the pipe at C is 1167.8 kg/m³  

4 0
2 years ago
As part of the overall systems engineering process, there are a variety of software development methods, but the three most comm
saw5 [17]

The three most common software development methods are the Waterfall Approach, the Incremental Approach, and the SPIRAL Approach. These methods depend on the team size and specific goals.

Software development is the sequential procedure that involves the division of the work into smaller and parallel stages in order to improve software design and product management.

The software development methods depend on both the team size and specific objectives.

The most common methodologies for software development include:

  • Waterfall
  • Spiral
  • Incremental
  • Agile
  • Continuous integration

Learn more about software development here:

brainly.com/question/14275830

8 0
2 years ago
Other questions:
  • The temperature of an electric welding arc is about?
    13·1 answer
  • Can someone please do this for me? I’m so behind on other work for different classes and this one is due today! please I’d appre
    11·1 answer
  • What is the instantaneous center of zero velocity? List two approaches for determining the is the instantaneous center of zero v
    9·1 answer
  • a vertical cylindrical container is being cooled in ambient air at 25 °C with no air circulation. if the initial temperature of
    12·2 answers
  • What are some possible reasons for the sudden development of the cell theory
    14·1 answer
  • Reusable refrigerant containers under high-pressure must be hydrostatically tested how often?
    10·1 answer
  • An orchestra is having a recording done of 2 performances in the same concert hall. The first show is sold out. They struggled t
    7·1 answer
  • Think about the science you have studied in the past or are currently studying. Give an example of something you have learned in
    11·1 answer
  • Steam enters a heat exchanger at a pressure of 1.5 bar and a temperature of 400°C with a mass flow rate of 0.05 kg/s and exits a
    11·1 answer
  • Come and look on my attachment​
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!