Answer:
230.4 s
Explanation:
The speed of car A is

and the distance travelled is

so the time taken for car A is

The speed of car B is

and the distance travelled is

so the time taken for car B is

So the difference in time is

Which corresponds to

so car B arrived 230.4 s before car A.
The final temperature of the seawater-deck system is 990°C.
<h3>What is heat?</h3>
The increment in temperature adds up the thermal energy into the object. This energy is Heat energy.
The deck of a small ship reaches a temperature Ti= 48.17°C seawater on the deck to cool it down. During the cooling, heat Q =3,710,000 J are transferred to the seawater from the deck. Specific heat of seawater= 3,930 J/kg°C.
Suppose for 1 kg of sea water, the heat transferred from the system is given by
3,710,000 = 1 x 3,930 x (T - 48.17)
T = 990°C to the nearest tenth.
The final temperature of the seawater-deck system is 990°C.
Learn more about heat.
brainly.com/question/13860901
#SPJ1
Answer:
5.01 J
Explanation:
Info given:
mass (m) = 0.0780kg
height (h) = 5.36m
velocity (v) = 4.84 m/s
gravity (g) = 9.81m/s^2
1. First, solve for Kinetic energy (KE)
KE = 1/2mv^2
1/2(0.0780kg)(4.84m/s)^2 = 0.91 J
so KE = 0.91 J
2. Next, solve for Potential energy (PE)
PE = mgh
(0.0780kg)(9.81m/s^2)(5.36m) = 4.10 J
so PE = 4.10 J
3. Mechanical Energy , E = KE + PE
Plug in values for KE and PE
KE + PE = 0.91J + 4.10 J = 5.01 J
equal and opposite reaction.
Answer:
1.8 × 10⁻⁸ Hm
Explanation:
Given that:
The refractive index of the film = 19
The wavelength of the light = 136.8 μ m
The thickness can be calculated by using the formula shown below as:
Where, n is the refractive index of the film
is the wavelength
So, thickness is:
Thickness = 1.8 μ m
Since,
1 μ m = 10⁻⁸ Hm
So,
Thickness = 1.8 × 10⁻⁸ Hm