Explanation:
Igneous - metamorphic - sedimentary
A rock cycle provides the cyclic transformation of one rock type to another in nature.
There are three main types of rock involved in the rock cycle;
- igneous rocks are derived from the cooling and solidification of molten magma
- metamorphic rocks are changed rocks subjected to intense pressure and temperature
- sedimentary rocks are derived from rock sediments that have been lithified.
The history of the rock in Monticello begins with igneous rock formation. Basalt is an igneous rock that forms from the cooling and solidification of molten magma. Under intense pressure and temperature regimes, they are changed to metamorphic rocks.
Agents of denudation such as wind, water and glacier weathers the rock and disintegrates it. They are then carried into basins where they are deposited. Here they form sedimentary rock.
The process still goes on as the sedimentary rock gets taken into depth, they can either melt to form igneous rock or be changed to metamorphic rocks.
learn more:
metamorphic process brainly.com/question/869769
sedimentary rocks brainly.com/question/9131992
#learnwithBrainly
Frequency = 1 / (period)
Frequency = 1 / (10 seconds) = (1/10) ( / second) = 0.1 per second = <em>0.1 Hz</em>.
You have traveled 390 km. In order to find your answer all you have to do is multiply your speed which is 130 km/h by 3 hrs. That's my friend is how you get your answer! Have a great day!
Answer:
the mass of the lipid content, to the nearest hundredth of a kg, in this solution =0.46 kg
Explanation:
Total heat content of the fat = heat content of water +heat content of the lipids
Let it be Q
the Q= (mcΔT)_lipids + (mcΔT)_water
total mass of fat M= 0.63 Kg
Q= heat supplied = 100 W in 5 minutes
ΔT= 20°C
c_lipid= 1700J/(kgoC)
c_water= 4200J/(kgoC)
then,

solving the above equation we get
m= 0.46 kg
the mass of the lipid content, to the nearest hundredth of a kg, in this solution =0.46 kg
let the distance of pillar is "r" from one end of the slab
So here net torque must be balance with respect to pillar to be in balanced state
So here we will have

here we know that
mg = 19600 N
Mg = 400,000 N
L = 20 m
from above equation we have



so pillar is at distance 10.098 m from one end of the slab