1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lys-0071 [83]
3 years ago
9

thermodynamics A nuclear power plant based on the Rankine cycle operates with a boiling-water reactor to develop net cycle power

of 3 MW. Steam exits the reactor core at 100 bar, 620°C and expands through the turbine to the condenser pressure of 1 bar. Saturated liquid exits the condenser and is pumped to the reactor pressure of 100 bar. Isentropic efficiencies of the turbine and pump are 87% and 78%, respectively. Cooling water enters the condenser at 15°C with a mass flow rate of 114.79 kg/s. Determine: (a) the percent thermal efficiency. (b) the temperature of the cooling water exiting the condenser, in °C.

Engineering
1 answer:
IrinaK [193]3 years ago
3 0

Answer:

(a) the percent thermal efficiency is 27.94%

(b) the temperature of the cooling water exiting the condenser is 31.118°C

Explanation:

You might be interested in
The emissivity of galvanized steel sheet, a common roofing material, is ε = 0.13 at temperatures around 300 K, while its absorpt
Step2247 [10]

Answer:

759.99W/m²

Explanation:

Question: If the temperature of the sheet is 77C,what is the incident solar radiation on aday with Tinf= Tsurr= 16°C?

Given

Energy Equation of the Gas

αs * Gs * A + h * A * (T inf - Tg) + εσA (Tsurr⁴- Tg⁴) = 0

Where σ= 5.67 *10^-8 W/m²K⁴ (Stefan-Boltzmann constant)

ε = 0.13 (Emisivity)

αs = 0.65 (Absorptivity for solar radiation)

h = 7W/m²K⁴

Tg = 77 + 273.15K = 350.15K

T inf = 16 + 273.15 = 288.15K

T surr= T inf = 288.15

Substitute the above values in the Gas Equation, we have

0.65 * Gs * A + 7 * A * (288.15 - 350.15) + 0.13 * 5.67 * 10^-8 * A * (288.15⁴ - 350.15⁴) = 0

0.65 * Gs * A = - 7 * A * (288.15 - 350.15) - 0.13 * 5.67 * 10^-8 * A * (288.15⁴ - 350.15⁴)

A cancels out, so we are left with

0.65 * Gs = - 7 * (288.15 - 350.15) - 0.13 * 5.67 * 10^-8 * (288.15⁴ - 350.15⁴)

0.65Gs = 434 - 0.7372 * 10^-8(−8,137,940,481.697)

0.65Gs = 434 + 0.7372 * 81.37940481697

0.65Gs = 493.992897231070284

Gs = 493.992897231070284/0.65

Gs = 759.9890726631850

Gs = 759.99W/m² ------- Approximated

3 0
3 years ago
A four-cylinder, four-stroke internal combustion engine operates at 2800 RPM. The processes within each cylinder are modeled as
Ulleksa [173]

Answer:

1) 287760.4 Hp

2) 18410899.5 kPa

Explanation:

The parameters given are;

p₁ = 14.7 lbf/in² = 101325.9 Pa

v₁ = 0.0196 ft³ = 0.00055501 m³

T₁ = 80°F = 299.8167 K

k = 1.4

Assumptions;

1) Air standard conditions are appropriate

2) There are negligible potential and kinetic energy changes

3) The air behaves as an ideal gas and has constant specific heat capacities of temperature and pressure

1) Process 1 to 2

Isentropic compression

T₂/T₁ = (v₁/v₂)^(1.4 - 1) = 10^0.4

p₂/p₁ = (v₁/v₂)^(1.4)

p₂ = p₁×10^0.4 =  101325.9*10^0.4 = 254519.153 Pa

T₂ = 299.8167*10^0.4 = 753.106 K

p₃ = 1080 lbf/in² = 7,446,338 Pa

Stage 2 to 3 is a constant volume process

p₃/T₃ = p₂/T₂

7,446,338/T₃ =   254519.153/753.106

T₃ = 7,446,338/(254519.153/753.106) = 22033.24 K

T₃/T₄ = (v₁/v₂)^(1.4 - 1) = 10^0.4

T₄ = 22033.24/(10^0.4) = 8771.59 K

The heat supplied, Q₁ = cv(T₃ - T₂) = 0.718*(22033.24 -753.106) = 15279.14 kJ

The heat rejected = cv(T₄ - T₁) = 0.718*(8771.59 - 299.8167) = 6082.73 kJ

W(net) = The heat supplied - The heat rejected = (15279.14 - 6082.73) = 9196.41 kJ

The power = W(net) × RPM/2*1/60 = 9196.41 * 2800/2*1/60 = 214582.9 kW

The power by the engine = 214582.9 kW = 287760.4 Hp

2) The mean effective pressure, MEP  = W(net)/(v₁ - v₂)

v₁ = 0.00055501 m³

v₁/v₂ = 10

v₂ = v₁/10 = 0.00055501/10 = 0.000055501

MEP  = 9196.41/(0.00055501 -  0.000055501) = 18410899.5 kPa

4 0
4 years ago
A large tank is filled to capacity with 500 gallons of pure water. Brine containing 2 pounds of salt per gallon is pumped into t
Nataly [62]

Answer:

A) A(t) = 10(100 - t) + c(100 - t)²

B) Tank will be empty after 100 minutes.

Explanation:

A) The differential equation of this problem is;

dA/dt = R_in - R_out

Where;

R_in is the rate at which salt enters

R_out is the rate at which salt exits

R_in = (concentration of salt in inflow) × (input rate of brine)

We are given;

Concentration of salt in inflow = 2 lb/gal

Input rate of brine = 5 gal/min

Thus;

R_in = 2 × 5 = 10 lb/min

Due to the fact that the solution is pumped out at a faster rate, thus it is reducing at the rate of (5 - 10)gal/min = -5 gal/min

So, after t minutes, there will be (500 - 5t) gallons in the tank

Therefore;

R_out = (concentration of salt in outflow) × (output rate of brine)

R_out = [A(t)/(500 - 5t)]lb/gal × 10 gal/min

R_out = 10A(t)/(500 - 5t) lb/min

So, we substitute the values of R_in and R_out into the Differential equation to get;

dA/dt = 10 - 10A(t)/(500 - 5t)

This simplifies to;

dA/dt = 10 - 2A(t)/(100 - t)

Rearranging, we have;

dA/dt + 2A(t)/(100 - t) = 10

This is a linear differential equation in standard form.

Thus, the integrating factor is;

e^(∫2/(100 - t)) = e^(In(100 - t)^(-2)) = 1/(100 - t)²

Now, let's multiply the differential equation by the integrating factor 1/(100 - t)².

We have;

So, we ;

(1/(100 - t)²)(dA/dt) + 2A(t)/(100 - t)³ = 10/(100 - t)²

Integrating this, we now have;

A(t)/(100 - t)² = ∫10/(100 - t)²

This gives;

A(t)/(100 - t)² = (10/(100 - t)) + c

Multiplying through by (100 - t)²,we have;

A(t) = 10(100 - t) + c(100 - t)²

B) At initial condition, A(0) = 0.

So,0 = 10(100 - 0) + c(100 - 0)²

1000 + 10000c = 0

10000c = -1000

c = -1000/10000

c = -0.1

Thus;

A(t) = 10(100 - t) + -0.1(100 - t)²

A(t) = 1000 - 10t - 0.1(10000 - 200t + t²)

A(t) = 1000 - 10t - 1000 + 20t - 0.1t²

A(t) = 10t - 0.1t²

Tank will be empty when A(t) = 0

So, 0 = 10t - 0.1t²

0.1t² = 10t

Divide both sides by 0.1t to give;

t = 10/0.1

t = 100 minutes

6 0
3 years ago
To measure the voltage drop across a resistor, a _______________ must be placed in _______________ with the resistor. Ammeter; S
gulaghasi [49]

Answer:

The given blanks can be filled as given below

Voltmeter must be connected in parallel

Explanation:

A voltmeter is connected in parallel to measure the voltage drop across a resistor this is because in parallel connection, current is divided in each parallel branch and voltage remains same in parallel connections.

Therefore, in order to measure the same voltage across the voltmeter as that of the voltage drop across resistor, voltmeter must be connected in parallel.

4 0
3 years ago
You are traveling upstream on a river at dusk. You see a buoy with the number 5 and a flashing green light . What should you do?
nalin [4]

Answer:

please give brainliest my brother just got the corona virus

Explanation:

this is my brothers account he wants to get 5 brainliest

8 0
3 years ago
Other questions:
  • A small truck is to be driven down a 4% grade at 70 mi/h. The coefficient of road adhesion is 0.95, and it is known that the bra
    7·1 answer
  • Consider a single crystal of some hypothetical metal that has the BCC crystal structure and is oriented such that a tensile stre
    10·1 answer
  • Write a function digits() that accepts a non-negative integer argument n and returns the number of digits in it’s decimal repres
    13·1 answer
  • WHO EVER COMMENTS FIRST GETS BRAINLIEST LOL
    15·2 answers
  • Write the following statements as Prolog clauses, in the order given: If it is raining or snowing, then there is precipitation.
    15·1 answer
  • Complete the following sentence.
    7·1 answer
  • Select the answer that shows how the recognition of depreciation expense
    10·1 answer
  • Giving away free brainliest your welcome​
    15·2 answers
  • A 240-ton tugboat is moving at 6 ft/s with a slack towing cable attached to a 100-ton barge that is at rest. The cable is being
    14·1 answer
  • A ____ is either in the pressure reducer or in the downstream side of the system to ensure that the control air pressure does no
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!