1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lys-0071 [83]
3 years ago
9

thermodynamics A nuclear power plant based on the Rankine cycle operates with a boiling-water reactor to develop net cycle power

of 3 MW. Steam exits the reactor core at 100 bar, 620°C and expands through the turbine to the condenser pressure of 1 bar. Saturated liquid exits the condenser and is pumped to the reactor pressure of 100 bar. Isentropic efficiencies of the turbine and pump are 87% and 78%, respectively. Cooling water enters the condenser at 15°C with a mass flow rate of 114.79 kg/s. Determine: (a) the percent thermal efficiency. (b) the temperature of the cooling water exiting the condenser, in °C.

Engineering
1 answer:
IrinaK [193]3 years ago
3 0

Answer:

(a) the percent thermal efficiency is 27.94%

(b) the temperature of the cooling water exiting the condenser is 31.118°C

Explanation:

You might be interested in
11. Ten bagels is what percentage of a dozen bagels?
IRINA_888 [86]

Answer:

the answer is d 83.3%

Explanation:

3 0
3 years ago
explain how a roller coaster functions using gravity and momentum. Why does it not need an engine or a motor to speed it up and
vichka [17]

Answer:

A roller coaster does not have an engine to generate energy. This builds up a supply of potential energy that will be used to go down the hill as the train is pulled by gravity. Then all of that stored energy is released as kinetic energy which is what will get the train to go up the next hill.

Explanation:

5 0
3 years ago
Read 2 more answers
Sea B = 5.00 m a 60.0°. Sea C que tiene la misma magnitud que A y un ángulo de dirección mayor que el de A en 25.0°. Sea A ⦁ B =
uranmaximum [27]

Answer:

\| \vec A \| = 6.163\,m

Explanation:

Sean A, B y C vectores coplanares tal que:

\vec A = (\| \vec A \|\cdot \cos \theta_{A},\| \vec A \|\cdot \sin \theta_{A}), \vec B = (\| \vec B \|\cdot \cos \theta_{B},\| \vec B \|\cdot \sin \theta_{B}) y \vec C = (\| \vec C \|\cdot \cos \theta_{C},\| \vec C \|\cdot \sin \theta_{C})

Donde \| \vec A \|, \| \vec B \| y \| \vec C \| son las normas o magnitudes respectivas de los vectores A, B y C, mientras que \theta_{A}, \theta_{B} y \theta_{C} son las direcciones respectivas de aquellos vectores, medidas en grados sexagesimales.

Por definición de producto escalar, se encuentra que:

\vec A \,\bullet\, \vec B = \|\vec A \| \| \vec B \| \cos \theta_{B}\cdot \cos \theta_{A} + \|\vec A \| \| \vec B \| \sin \theta_{B}\cdot \sin \theta_{A}

\vec B \,\bullet\, \vec C = \|\vec B \| \| \vec C \| \cos \theta_{B}\cdot \cos \theta_{C} + \|\vec B \| \| \vec C \| \sin \theta_{B}\cdot \sin \theta_{C}

Asimismo, se sabe que \| \vec B \| = 5\,m, \theta_{B} = 60^{\circ}, \vec A \,\bullet \,\vec B = 30\,m^{2}, \vec B\, \bullet\, \vec C = 35\,m^{2}, \|\vec A \| = \| \vec C \| y \theta_{C} = \theta_{A} + 25^{\circ}. Entonces, las ecuaciones quedan simplificadas como siguen:

30\,m^{2} = 5\|\vec A \| \cdot (\cos 60^{\circ}\cdot \cos \theta_{A} + \sin 60^{\circ}\cdot \sin \theta_{A})

35\,m^{2} = 5\|\vec A \| \cdot [\cos 60^{\circ}\cdot \cos (\theta_{A}+25^{\circ}) + \sin 60^{\circ}\cdot \sin (\theta_{A}+25^{\circ})]

Es decir,

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot [2.5\cdot \cos (\theta_{A}+25^{\circ})+4.330\cdot \sin (\theta_{A}+25^{\circ}})]

Luego, se aplica las siguientes identidades trigonométricas para sumas de ángulos:

\cos (\theta_{A}+25^{\circ}) = \cos \theta_{A}\cdot \cos 25^{\circ} - \sin \theta_{A}\cdot \sin 25^{\circ}

\sin (\theta_{A}+25^{\circ}) = \sin \theta_{A}\cdot \cos 25^{\circ} + \cos \theta_{A} \cdot \sin 25^{\circ}

Es decir,

\cos (\theta_{A}+25^{\circ}) = 0.906\cdot \cos \theta_{A} - 0.423 \cdot \sin \theta_{A}

\sin (\theta_{A}+25^{\circ}) = 0.906\cdot \sin \theta_{A} + 0.423 \cdot \cos \theta_{A}

Las nuevas expresiones son las siguientes:

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot [2.5\cdot (0.906\cdot \cos \theta_{A} - 0.423 \cdot \sin \theta_{A})+4.330\cdot (0.906\cdot \sin \theta_{A} + 0.423 \cdot \cos \theta_{A})]

Ahora se simplifican las expresiones, se elimina la norma de \vec A y se desarrolla y simplifica la ecuación resultante:

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot (4.097\cdot \cos \theta_{A} +2.865\cdot \sin \theta_{A})

\frac{30\,m^{2}}{2.5\cdot \cos \theta_{A}+ 4.330\cdot \sin \theta_{A}} = \frac{35\,m^{2}}{4.097\cdot \cos \theta_{A} + 2.865\cdot \sin \theta_{A}}

30\cdot (4.097\cdot \cos \theta_{A} + 2.865\cdot \sin \theta_{A}) = 35\cdot (2.5\cdot \cos \theta_{A}+4.330\cdot \sin \theta_{A})

122.91\cdot \cos \theta_{A} + 85.95\cdot \sin \theta_{A} = 87.5\cdot \cos \theta_{A} + 151.55\cdot \sin \theta_{A}

35.41\cdot \cos \theta_{A} = 65.6\cdot \sin \theta_{A}

\tan \theta_{A} = \frac{35.41}{65.6}

\tan \theta_{A} = 0.540

Ahora se determina el ángulo de \vec A:

\theta_{A} = \tan^{-1} \left(0.540\right)

La función tangente es positiva en el primer y tercer cuadrantes y tiene un periodicidad de 180 grados, entonces existen al menos dos soluciones del ángulo citado:

\theta_{A, 1} \approx 28.369^{\circ} y \theta_{A, 2} \approx 208.369^{\circ}

Ahora, la magnitud de \vec A es:

\| \vec A \| = \frac{35\,m^{2}}{4.097\cdot \cos 28.369^{\circ} + 2.865\cdot \sin 28.369^{\circ}}

\| \vec A \| = 6.163\,m

8 0
4 years ago
Construction lines are thick lines true false
ANTONII [103]

Answer:

true

Explanation:

4 0
3 years ago
Read 2 more answers
The rate of energy transfer by work is called power. a)-True b)-False
Pie

Answer:

Yes the statement is true.

Explanation:

Power is defined as the rate at which energy is transferred by an object on account of work done.

Mathematically

Power=\frac{dE}{dt}

An object that does work loses it's energy while an object on which work is done gains energy.

Power is often dependent on the type of energy transfer thus we have Electrical Power, Mechanical Power depending on the type of energy involved in the system.

Concept of power is important since it gives us a measure of how fast energy can be derived to given to a system.

5 0
4 years ago
Other questions:
  • Insulated Gas Turbine Air enters an adiabatic gas turbine at 1050 K and 1 MPa and leaves at 400 kPa. Kinetic and potential energ
    14·1 answer
  • A plane wall with surface temperature of 350°C is attached with straight rectangular fins (k = 235 W/m·K). The fins are exposed
    6·1 answer
  • Consider an experiment in which the number of pumps in use at each of two seven-pump gas stations was determined. Call the two g
    10·1 answer
  • A crate with dimension 12 x 10 x 4in and a mass of 120 lbs slides on an inclined plane of dimension 80 x 10 x 3in. Answer the fo
    12·1 answer
  • Air enters a well-insulated turbine operating at steady, state with negligible velocity at 4 MPa, 300°C. The air expands to an e
    10·1 answer
  • How are eras different from decades?
    5·1 answer
  • Select the correct verb form to complete each of the following sentences.Members of the committee ____ issued a mobile phone and
    8·1 answer
  • What is the period if the clock frequency is 3.5 GHz?
    10·1 answer
  • Engineering includes making things that already exist, except making them better. * true or false
    8·1 answer
  • Does anyone know the answer to this
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!