The energy stored in the membrane is 
Explanation:
The capacitance of a parallel-plate capacitor is given by

where
k is the dielectric constant of the material
is the vacuum permittivity
A is the area of the plates
d is the separation between the plates
For the membrane in this problem, we have
k = 4.6


Substituting, we find its capacitance:

Now we can find the energy stored: for a capacitor, it is given by

where
is the capacitance
is the potential difference
Substituting,

Learn more about capacitors:
brainly.com/question/10427437
brainly.com/question/8892837
brainly.com/question/9617400
#LearnwithBrainly
If you mean S is the distance then it is true
Velocity = Distance / time
To develop this problem it is necessary to apply the concepts related to the Dopler effect.
The equation is defined by

Where
= Approaching velocities
= Receding velocities
c = Speed of sound
v = Emitter speed
And

Therefore using the values given we can find the velocity through,


Assuming the ratio above, we can use any f_h and f_i with the ratio 2.4 to 1


Therefore the cars goes to 145.3m/s
Answer: 12,600,000Cm
Explanation:
From the data's;
Charges(q) = 1.8 PC equal to 1.8 x 10^¹²C
Distance = 7 micrometer, is equal to 0.0000070m
From the equation of electric dipole moment, p= q x d, where q= charge, d=distance and p is the dipole moment.
Then we have 1.8x10^¹² x 0.0000070= 12,600,000Cm
NB: The charges are identical.
Answer:
Explanation:
a ) AM radio band (540–1600 kHz)
frequency = 540 kHz = 540 x 10³ Hz
wave length = velocity of light / frequency
= 3 x 10⁸ / 540 x 10³
= 555.55 m
frequency = 1600 kHz = 1600 x 10³ Hz
wave length = velocity of light / frequency
= 3 x 10⁸ / 1600 x 10³
= 187.5 m
maximum wavelength = 555.55 m
minimum wavelength = 187.5 m
b )
AM radio band (88 - 108 MHz)
frequency = 88 MHz = 88 x 10⁶ Hz
wave length = velocity of light / frequency
= 3 x 10⁸ / 88 x 10⁶
= 3.41 m
frequency = 108 MHz = 108 x 10⁶ Hz
wave length = velocity of light / frequency
= 3 x 10⁸ / 108 x 10⁶
= 2.78 m
maximum wavelength = 3.41 m
minimum wavelength = 2.78 m