The answer is 3.02 x 10^-5
Answer:
F = 800 [N]
Explanation:
To be able to calculate this problem we must use the principle of momentum before and after the impact of the hammer.
We must summarize that after the impact the hammer does not move, therefore its speed is zero. In this way, we can propose the following equation.
ΣPbefore = ΣPafter

where:
m₁ = mass of the hammer = 0.15 [m/s]
v₁ = velocity of the hammer = 8 [m/s]
F = force [N] (units of Newtons)
t = time = 0.0015 [s]
v₂ = velocity of the hammer after the impact = 0
![(0.15*8)-(F*0.0015) = (0.15*0)\\F*0.0015 = 0.15*8\\F = 1.2/(0.0015)\\F = 800 [N]](https://tex.z-dn.net/?f=%280.15%2A8%29-%28F%2A0.0015%29%20%3D%20%280.15%2A0%29%5C%5CF%2A0.0015%20%3D%200.15%2A8%5C%5CF%20%3D%201.2%2F%280.0015%29%5C%5CF%20%3D%20800%20%5BN%5D)
Note: The force is taken as negative since it is exerted by the nail on the hammer and this force is directed in the opposite direction to the movement of the hammer.
Resistance is the name of the ratio of the voltage applied to a circuit and the current in a circuit. Goes under <span>Ohm's Law</span>
I don’t worry wewwwww it is a good time to get it done lol lol i don’t worry about it lol lol i lol
The electrons contribute just about zero to the mass of an atom.
It takes more than 1,800 electrons to make the mass of one
proton or neutron.
The naturally occurring element with the most complex atom is
Uranium. That's element #92 , so a neutral uranium atom has
92 electrons. It would take almost exactly 20 times that many
electrons to add the mass of one proton or neutron to the atom!
(And no other element has that many electrons in an atom of it.)