As per the question there are three physical quantities named as position,distance and displacement.
Before coming into a conclusion first we have to understand a vector and a scalar.
A scalar quantity is a quantity which has only magnitude for it's complete specifications.
A vector is a quantity which has magnitude as well as direction and at the same time it is in accordance with the paraellogram law of vector addition.
Out of the three options displacement and position are vector quantities.It is because it is the minimum distance between two points .It has magnitude as well as direction.
Distance can not be considered as a vector quantity as it has only magnitude.There is no specific directions of distance travelled.
Position vector is a vector which provides location of an object in a plane or space.It is nothing else except the point which has x,y,z coordinates with origin is taken as the reference point.
Hence position and displacement are vectors
Answer:
m = 9.6 g
Explanation:
Thermal energy given to helium gas at constant volume is given as

so here we have



so we have

now we know that
for oxygen gas we have

for same amount of heat we have




Answer:
<em>The velocity of the ball as it hit the ground = 19.799 m/s</em>
Explanation:
Velocity: Velocity of a body can be defined as the rate of change of displacement of the body. The S.I unit of velocity is m/s. velocity is expressed in one of newtons equation of motion, and is given below.
v² = u² + 2gs.......................... Equation 1
Where v = the final velocity of the ball, g = acceleration due to gravity, s = the height of the ball
<em>Given: s = 20 m, u = 0 m/s</em>
<em>Constant: g = 9.8 m/s²</em>
<em>Substituting these values into equation 1,</em>
<em>v² = 0 + 2×9.8×20</em>
<em>v² = 392</em>
<em>v = √392</em>
<em>v = 19.799 m/s.</em>
<em>Therefore the velocity of the ball as it hit the ground = 19.799 m/s</em>
Answer:
g = 8.61 m/s²
Explanation:
distance of the International Space Station form earth is 200 Km
mass of the object = 1 Kg
acceleration due to gravity on earth = 9.8 m/s²
mass of earth = 5.972 x 10²⁴ Kg
acceleration due to gravity = ?
r = 6400 + 200 = 6800 Km = 6.8 x 10⁶ n
using formula


g = 8.61 m/s²
Answer:
Vy = V0 sin 38 where Vy is the initial vertical velocity
The ball will accelerate downwards (until it lands)
Note the signs involved if Vy is positive then g must be negative
The acceleration is constant until the ball lands
t (upwards) = (0 - Vy) / -g = Vy / g final velocity = 0
t(downwards = (-Vy - 0) / -g = Vy / g final velocity = -Vy
time upwards = time downwards (conservation laws)