Ionic bonding is the complete transfer of valence electron(s) between atoms. It is a type of chemical bond that generates two oppositely charged ions. In ionic bonds, the metal loses electrons to become a positively charged cation, whereas the nonmetal accepts those electrons to become a negatively charged anion.
Answer:
The solution is 50 %wt
Explanation:
50% wt is a sort of concentration and means, that 50 g of solute (in this case, the potassium bromide) dissolved in 100 g of water.
It is the same to say, that there are 50g of KBr for every 100g of H₂O
Answer:- 3.12 g carbon tetrachloride are needed.
Solution:- The balanced equation is:

From given actual yield and percent yield we will calculate the theoretical yield that would be further used to calculate the grams of carbon tetrachloride.
percent yield formula is:
percent yield = 


theoretical = 3.44 g
From balanced equation, there is 2:1 mol ratio between dichloethane and carbon tetrachloride.
Molar mass of dichloroethane is 84.93 gram per mol and molar mass of carbon tetrachloride is 153.82 gram per mol.

= 
So, 3.12 grams of carbon tetrachloride are needed to be reacted.
where are equations dear????
Answer:
The reaction rate becomes quadruple.
Explanation:
According to the law of mass action:-
The rate of the reaction is directly proportional to the active concentration of the reactant which each are raised to the experimentally determined coefficients which are known as orders. The rate is determined by the slowest step in the reaction mechanics.
Order of in the mass action law is the coefficient which is raised to the active concentration of the reactants. It is experimentally determined and can be zero, positive negative or fractional.
The order of the whole reaction is the sum of the order of each reactant which is raised to its power in the rate law.
Thus,
Given that:- The rate law is:-
![r=k[A_2][B_2]](https://tex.z-dn.net/?f=r%3Dk%5BA_2%5D%5BB_2%5D)
Now,
and ![[B'_2]=2[B_2]](https://tex.z-dn.net/?f=%5BB%27_2%5D%3D2%5BB_2%5D)
So, ![r'=k[A'_2][B'_2]=k\times 2[A_2]\times 2[B_2]=4\times k[A_2][B_2]=4r](https://tex.z-dn.net/?f=r%27%3Dk%5BA%27_2%5D%5BB%27_2%5D%3Dk%5Ctimes%202%5BA_2%5D%5Ctimes%202%5BB_2%5D%3D4%5Ctimes%20k%5BA_2%5D%5BB_2%5D%3D4r)
<u>The reaction rate becomes quadruple.</u>