Do it as if you are writing a yes or no statement but have edge more towards the no side.
Answer:
<em>The cyclist is traveling at 130 m/s</em>
Explanation:
<u>Constant Acceleration Motion
</u>
It's a type of motion in which the velocity of an object changes by an equal amount in every equal period of time.
Being a the constant acceleration, vo the initial speed, vf the final speed, and t the time, the following relation applies:

The cyclist initially travels at 10 /s and it's accelerating at a=6m/s^2. We need to know the new speed when t= 20 seconds have passed.
Apply the above equation:



The cyclist is traveling at 130 m/s
Answer:
Q₂ = 5833.33 J
Explanation:
First we need to find the energy supplied to the heat engine. The formula for the efficiency of the heat engine is given as:
η = W/Q₁
where,
η = efficiency of engine = 30% = 0.3
W = Work done by engine = 2500 J
Q₁ = Heat supplied to the engine = ?
Therefore,
0.3 = 2500 J/Q₁
Q₁ = 2500 J/0.3
Q₁ = 8333.33 J
Now, we find the heat discharged to lower temperature reservoir by using the formula of work:
W = Q₁ - Q₂
Q₂ = Q₁ - W
where,
Q₂ = Heat discharged to the lower temperature reservoir = ?
Therefore,
Q₂ = 8333.33 J - 2500 J
<u>Q₂ = 5833.33 J</u>
Explanation:
<em>Light</em><em> </em><em>is</em><em> </em><em>a</em><em> </em><em>form</em><em> </em><em>of</em><em> </em><em>energy</em><em> </em><em>that</em><em> </em><em>travels</em><em> </em><em>as</em><em> </em><em>waves</em><em>.</em>