Answer:
M = 281.25 lb*ft
Explanation:
Given
W<em>man</em> = 150 lb
Weight per linear foot of the boat: q = 3 lb/ft
L = 15.00 m
M<em>max</em> = ?
Initially, we have to calculate the Buoyant Force per linear foot (due to the water exerts a uniform distributed load upward on the bottom of the boat):
∑ Fy = 0 (+↑) ⇒ q'*L - W - q*L = 0
⇒ q' = (W + q*L) / L
⇒ q' = (150 lb + 3 lb/ft*15 ft) / 15 ft
⇒ q' = 13 lb/ft (+↑)
The free body diagram of the boat is shown in the pic.
Then, we apply the following equation
q(x) = (13 - 3) = 10 (+↑)
V(x) = ∫q(x) dx = ∫10 dx = 10x (0 ≤ x ≤ 7.5)
M(x) = ∫10x dx = 5x² (0 ≤ x ≤ 7.5)
The maximum internal bending moment occurs when x = 7.5 ft
then
M(7.5) = 5(7.5)² = 281.25 lb*ft
Answer:
11.541 mol/min
Explanation:
temperature = 35°C
Total pressure = 1.5 * 1.013 * 10^5 = 151.95 kPa
note : partial pressure of water in mixture = saturation pressure of water at T = 35°c )
from steam table it is = 5.6291 Kpa
calculate the mole fraction of H
( YH
)
= 5.6291 / 151.95
= 0.03704
calculate the mole fraction of air ( Yair )
= 1 - mole fraction of water
= 1 - 0.03704 = 0.9629
Now to determine the molar flow rate of water vapor in the stream
lets assume N = Total molar flow rate
NH
= molar flow rate of water
Nair = molar flow rate of air = 300 moles /min
note : Yair * n = Nair
therefore n = 300 / 0.9629 = 311.541 moles /min
Molar flowrate of water
= n - Nair
= 311.541 - 300 = 11.541 mol/min
Answer:
The process of generation of force by the high speed that pushes the jet engine forward is based on Newton’s 2 law of motion ?
Explanation:
1, Newton’s first law states that, if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force. This postulate is known as the law of inertia.
2,
Newton’s second law is a quantitative description of the changes that a force can produce on the motion of a body. It states that the time rate of change of the momentum of a body is equal in both magnitude and direction to the force imposed on it. The momentum of a body is equal to the product of its mass and its velocity. Momentum, like velocity, is a vector quantity, having both magnitude and direction. A force applied to a body can change the magnitude of the momentum, or its direction, or both.For a body whose mass m is constant, it can be written in the form F = ma, where F (force) and a (acceleration)
3, Newton’s third law states that when two bodies interact, they apply forces to one another that are equal in magnitude and opposite in direction.The third law is also known as the law of action and reaction. This law is important in analyzing problems of static equilibrium, where all forces are balanced, but it also applies to bodies in uniform or accelerated motion. The forces it describes are real ones, not mere bookkeeping devices. For example, a book resting on a table applies a downward force equal to its weight on the table. According to the third law, the table applies an equal and opposite force to the book.
Answer:
Logarithmic decrement is equal to 0.182
Explanation:
given,
amplitude decay = 9 dB
number of cycles = 12 cycles
mass of the system = 7 kg
spring stiffness = 3000 N/m
logarithmic decrement = ?
now,
logarithmic decreament = 
= 
=ln (1.2)
= 0.182
Hence, Logarithmic decrement is equal to 0.182
Jeanpaul because he was the first guy that was smart