1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rus_ich [418]
3 years ago
11

Suppose you are on a cart, initially at rest, which rides on a frictionless horizontal track. You throw a ball at a vertical sur

face that is firmly attached to the cart. If the ball bounces straight back as shown in the picture, will the cart be put into motion after the ball bounces back from the surface?
A.Yes, and it moves to the right.
B.Yes, and it moves to the left.
C.No, it remains in place

Physics
1 answer:
Len [333]3 years ago
3 0

Answer:

F_c t_ c = -F_b t_b

And the forces are equal but in the opposite direction. So then we can write by general rule:

m_c \Delta V_{c} = -m_b \Delta V_b

Or equivalently:

m_c \Delta V_{c} +m_b \Delta V_b =0

Where: V_c represent the speed of the car and V_b the speed of the ball

m_c represent the mass of the car

m_b represent the mass of the ball

Since the ball is moving to the left and we assume that the total momentum not changes then the car need to move to the right in order to satisfy the equation and satisfy the balance.

By conservation of the momentum the car will move to the right since the ball is moves to the left.

So then the correct option for this case is :

A.Yes, and it moves to the right.

Explanation:

If we assume that we have the situation in the figure attached.

For this case we assume that the momentum changes are equal in magnitude and opposite in direction, so then we satisfy this:

F_c t_ c = -F_b t_b

And the forces are equal but in the opposite direction. So then we can write by general rule:

m_c \Delta V_{c} = -m_b \Delta V_b

Or equivalently:

m_c \Delta V_{c} +m_b \Delta V_b =0

Where: V_c represent the speed of the car and V_b the speed of the ball

m_c represent the mass of the car

m_b represent the mass of the ball

Since the ball is moving to the left and we assume that the total momentum not changes then the car need to move to the right in order to satisfy the equation and satisfy the balance.

By conservation of the momentum the car will move to the right since the ball is moves to the left.

So then the correct option for this case is :

A.Yes, and it moves to the right.

You might be interested in
How can we realize that light travel in straight line ?​
Norma-Jean [14]

Answer:

It can be seen from the operation of pin-hole camera, formation of shadows and eclipse.

Explanation:

The phenomenon of light traveling in a straight line is known as rectilinear propagation of light.

One this evidence can be seen from the operation of pin-hole camera, which depends on rectilinear propagation of light

Also two natural effects that result from the rectilinear propagation of light are the formation of Shadows and Eclipse.  

3 0
3 years ago
Why is the sky blue?
Taya2010 [7]
A clear cloudless day-time sky is blue because molecules in the air scatter blue light from the sun more than they scatter red light. When we look towards the sun at sunset, we see red and orange colours because the blue light has been scattered out and away from the line of sight.
4 0
3 years ago
When sound travels through air, the particles _____. a. vibrate along the direction the wave travels b. vibrate but not in any f
Mandarinka [93]
Vibrate along the direction the wave travels
8 0
3 years ago
How do climate differences affect the movement at the Mariana Trench
vovangra [49]
It pushes the currents to opposite sides
8 0
3 years ago
A milliammeter has an internal resistance of 5ohms and
Vikentia [17]

Answer:

Rs = 0.02008 Ω = 20.08 mΩ

Explanation:

The range of an ammeter can be increased by connecting a small shunt resistance to it in a series combination. This shunt resistance can be calculated by the following formula:

Rs = \frac{I_gR_g}{I - I_g}

where,

R_s = value of shunt resistance = ?

I_g = current range of ammeter = 20 mA = 0.02 A

I = Required range of ammeter = 5 A

R_g = Resistance of ammeter = 5 ohms

Therefore,

R_s = \frac{(0.02\ A)(5\ ohms)}{5\ A-0.02\ A}

<u>Rs = 0.02008 Ω = 20.08 mΩ</u>

7 0
3 years ago
Other questions:
  • Genetic mutations occur in populations over time . These mutations are
    10·1 answer
  • An observation of the red shift of galaxies suggestst that the universe is
    8·1 answer
  • 11. A 2.5-kg block slides down a 25o inclined plane with a constant acceleration. The block starts from rest at the top. At the
    7·1 answer
  • A car moving with a velocity of 20 meters/second has
    6·1 answer
  • Estimate the number of atoms in 1 cm^3 of a solid
    15·1 answer
  • The position of a certain airplane during takeoff is given by x=1/2 *bt2, where b = 2.0 m/s2 and t = 0 corresponds to the instan
    10·1 answer
  • Es el cambio de estado en el que un sólido pasa a gaseoso sin pasar por el estado líquido o viceversa
    5·1 answer
  • A small charge q is placed near a large spherical charge Q. The force experienced by both charges is F. The electric eld created
    11·1 answer
  • It urgent ! A simple circuit consists of an unknown voltage source and a single 35. 0 Ω resistor. If the current in the circuit
    9·1 answer
  • Use the same line to answer the questions
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!