The mass of the air in the room is
50 kg.
V = lwh = 15.5 ft × 12.5 ft × 8 ft = 1550 ft³
1 ft = 12 in ×

= 30.48 cm
V = 1550 ft³ ×

= 4.39 × 10⁷ cm ³ = 4.39 × 10⁷mL = 4.39 × 10⁴ L
Mass = 4.39 × 10⁴ L ×

= 5.22 × 10⁴ g = 52.2 kg
Note: The answer can have only 1 significant figure, because that is all you gave for the height of the room.
To the correct number of significant figures, the mass of the air in the room is 50 kg.
Eye protection, fire proof clothing, proper foot gear, just anything that you could prevent yourself from being burned because you are working with flammable materials.
Answer:
Explanation:
Oxidation:
Oxidation involve the removal of electrons and oxidation state of atom of an element is increased.
Reduction:
Reduction involve the gain of electron and oxidation number is decreased.
Oxidizing agents:
Oxidizing agents oxidize the other elements and itself gets reduced.
Reducing agents:
Reducing agents reduced the other element are it self gets oxidized.
Consider the following reaction:
2AgCl + Zn → 2Ag + ZnCl₂
In this reaction oxidation state of Zn on left side is 0 while on right side +2 so it gets oxidized and oxidation state of Ag on left side is +1 and on right side 0 so it get reduced.
4NH₃ + 3O₂ → 2N₂ + 6H₂O
In this reaction oxidation state of nitrogen on left side is -3 while on right side 0 so it gets oxidized and oxidation state of oxygen on left side is 0 and on right side -2 so it get reduced.
Fe₂O₃ + 2Al → Al₂O₃ + 2Fe
In this reaction oxidation state of iron on left side is +3 while on right side 0 so it gets reduced and oxidation state of Al on left side is 0 and on right side +3 so it get oxidized.
Answer:
The final volume of NaOH solution is 30ml
Explanation:
We all know that
V1S1 = V2S2
or V1= V2S2÷S1
or V1= V2×S2×1/S1
or V1=100×0.15×1/0.50
V1= 30
∴30 ml NaOH solution is required to prepare 0.15 M from 100ml 0.50 M NaOH solution.
According to Kepler's second law of orbital motion, a plane's orbital speed changes , depending on how far it is from the sun. The closer a planet is to the sun, the stronger the sun's gravitational pull on it, and the faster the planet moves. The farther away from the sun, the weaker the sun's gravitational pull and the slower it moves in its orbit.
The orbit of a planet around the sun is not a perfect circle, but an ellipse - a flattened circle.