Hi , if you are asking for the types of energy , here's your answer:
1. Radiative energy , because the microwave is releasing radiation.
2.Light energy , because there is light inside the microwave.
3.electronic energy , because the microwave is using electricity.
I’m positive it’s gonna be c
Answer:
Lowering the object near the ground decreases its <u>potential energy.</u>
<u></u>
Explanation:
Potential Energy : Energy possessed by the object due to its shape ,Size and Position is called potential energy.
Example :
Change in shape and size : When you compress the spring , potential energy is introduced in it . So it expand quickly when you remove your hand.
Change in position : when you swing , after attaining maximum height (extreme ends) , the swing comes back on its on .This is because at maximum height ,the swing has<u> maximum Potential energy . </u>Hence it fall back on its on because it already has potential energy.
Potential energy(P) is given by the formula :
P = mgh
where ,
m= mass of the object
g = acceleration due to gravity
h = height of the object from the ground
If the height of the object increases from the ground , its potential energy also get increase.
<u><em>On lowering the object The height of the object from the ground reduces . So potential energy also reduces.</em></u>
In chemistry, a solution is a homogeneous mixture composed of two or more substances. In such a mixture, a solute is a substance dissolved in another substance, known as a solvent.
Answer:
The atomic mass of the boron atom would be <em>10.135</em>
Explanation:
This is generally known as relative atomic mass.
Relative atomic mass or atomic weight is a physical quantity defined as the ratio of the average mass of atoms of a chemical element in a given sample to the atomic mass of 1/12 of the mass of a carbon-12 atom. Since both quantities in the ratio are masses, the resulting value is dimensionless; hence the value is said to be relative and does not have a unit.
<em>Note that the relative atomic mass of atoms is not always a whole number because of it being isotopic in nature.</em>
- <em>Divide each abundance by 100 then multiply by atomic mass</em>
- <em>Do that for each isotope, then add the two result. Thus</em>
Relative atomic mass of Boron = (18.5/100 x 11) + (81/100 x 10)
= 2.035 + 8.1
= 10.135