At STP conditions, 0.25 moles of CO2(g), H2(g), NH3(g)
The answers are:
<span>1. Will contain the same number of molecules </span>
3. Will occupy the same volume
Answer:
Explanation:
concepts, such as the internal energy of a system; heat or sensible heat, which are defined as types of energy transfer (as is work); or for the characteristic energy of a degree of freedom in a thermal system {\displaystyle kT}kT, where {\displaystyle T}T is temperature and {\displaystyle k}k is the Boltzmann constant.
Explanation:
In gases the molecules are held together by weak Vander waal forces. Due to this they have more kinetic energy and they tend to diffuse at a faster rate because of more number of collisions between the molecules.
That is why, its molecules readily spread into the atmosphere as compared to the molecules of solids and liquids. Also, when molecules of a gas collide with the walls of a container then they tend to come back at their initial position for a fraction of second or more.
Hence, gas collisions are elastic in nature.
According to Graham's law, rate of diffusion of a gas is inversely proportional to the square root of molar mass of the gas. Hence, more is the molecular weight of gas less likely it is able to diffuse into the surroundings.

Thus, we can conclude that following apply to gases.
- Gas collisions are elastic.
- Gases mix faster than solids or liquids.
- Gases with larger molecular weights diffuse slower than gases with lower molecular weights.
Answer:
i = 2.79
Explanation:
The excersise talks about the colligative property, freezing point depression.
Formula to calculate the freezing point of a solution is:
Freezing point of pure solvent - Freezing point of solution = m . Kf . i
Let's replace data given. (i = Van't Hoff factor, numbers of ions dissolved in solution)
48.1°C - 44°C = 0.15 m . 9.78°C/m . i
4.1°C / (0.15 m . 9.78°C/m) = i
i = 2.79
In this case, numbers of ions dissolved can decrease the freezing point of a solution, which is always lower than pure solvent.
Answer:
The answer is C I think..