A electrochemical reaction is said to be spontaneous, if
Answer 1:
Consider reaction: <span>Ni^2+ (aq) + S^2- (aq) ----> + Ni (s) + S (s)
The cell representation of above reaction is given by;
</span>

Hence,

we know that,

and

Therefore,

= - 0.25 - (-0.47) = 0.22 v
Since,
is positive, hence cell reaction is spontaneous
.....................................................................................................................
Answer 2: Consider reaction: <span>Pb^2+ (aq) +H2 (g) ----> Pb (s) +2H^+ (aq)
</span>
The cell representation of above reaction is given by;

Hence,

we know that,

and

Therefore,

= - 0.126 - 0 = -0.126 v
Since,
is negative, hence cell reaction is non-spontaneous.....................................................................................................................
Answer 3:
Consider reaction: <span>2Ag^+ (aq) + Cr(s) ---> 2 Ag (s) +Cr^2+ (aq)
</span>
The cell representation of above reaction is given by;

Hence,

we know that,

and

Therefore,

= - 0.22 - (-0.913) = 0.693 v
Since,
is positive, hence cell reaction is spontaneous
Let us start with the total area of the lawn. Area= width x length, ie, 21 x 20 = 420 sq. ft. Snow flakes per square foot per minute = 1350 So Snow flakes for 420 sq.feet per minute = 420 x 1350 = 567000. Snow flakes for 1 hour = 567000 x 60 = 34020000 (60 minutes) Weight of 34020000 snow flakes = 34020000 x 1.60 = 54432000mg. To convert it into kilograms, divide this number by 1000000 (1 kilogram = 1000000 milligrams) Thus 54432000/1000000 = 54.432 kilograms or 54 kilograms and 432 grams.
Answer:
Specific heat of ethyl chloride in gas and liquid phases, enthalpy of vaporization and specific heat of solid surface.
Explanation:
In order to determine the final temperature, the heat lost by the chloride needs to be found. This would require the specific heat in both phases and the enthalpy of vaporization. (you will use q=mc(delta)T and q=m(delta)H)
Then the energy gained by the surface needs to be found. This will require the specific heat in order to use the q=mc(delta)T equation.