Explanation:
Work done by winch = kinetic energy of car
∫ T ds = ½ mv²
∫ 225s ds = ½ mv²
225/2 s² = ½ mv²
225 s² = mv²
v = 15s / √m
Given s = 10 m and m = 2500 kg:
v = 15 (10) / √2500
v = 3 m/s
To determine the displacement, since we are given the potential energy, we use the equation for potential energy. For a spring, it is one-half the product of the spring constant and the square of the displacement. We do as follows:
PE = kx^2/2
5 Nm = 50N/m (x^2)
x = 0.32 m
Therefore, the displacement would be 0.32 m.
Answer:
Juno scientific payload includes:
- A gravity/radio science system (Gravity Science)
- A six-wavelength microwave radiometer for atmospheric sounding and composition (MWR)
- A vector magnetometer (MAG)
- Plasma and energetic particle detectors (JADE and JEDI)
- A radio/plasma wave experiment (Waves)
- An ultraviolet imager/spectrometer (UVS)
- An infrared imager/spectrometer (JIRAM)
Explanation:
Each mission of NASA has a specific set of instruments that it uses to perform scientific experiments on the desired heavenly body. In case of Juno, the mission for Jupiter has a series of instruments that would study domains of gravitational forces, magnetic effect, particle detection, radiation detection, UV/IR imaging, and plasma experiments.
Answer:
Helium
Explanation:
Helium is the least reactive element, since it is a noble gas with the smallest amount of valence rings.
Answer:
Hello your question is incomplete attached below is the complete question
Answer : x ( acceleration of mass 4m ) = 
The top pulley rotates because it has to keep the center of mass of the system at equilibrium
Explanation:
Given data:
mass suspended = 4 meters
mass suspended at other end = 3 meters
first we have to express the kinetic and potential energy equations
The general kinetic energy of the system can be written as
T = 
T =
also the general potential energy can be expressed as
U = 
The Lagrangian of the problem can now be setup as

next we will take the Euler-Lagrange equation for the generalized equations :
Euler-Lagrange equation = 
solving the equations simultaneously
x ( acceleration of mass 4m ) = 
The top pulley rotates because it has to keep the center of mass of the system at equilibrium