Answer:
Increasing the mass and decreasing the distance between the two objects.
Explanation:
An increase in mass will cause them to have a stronger pull or gravity. A decrease of distance will make it easier for the objects to fall into each other because they would be further into the other objects area of influence.
Answer:
C
Explanation:
I think it's C, because at that point, you are going fastest. Sorry if im wrong, hope this helps.
If the rod is in rotational equilibrium, then the net torques acting on it is zero:
∑ τ = 0
Let's give the system a counterclockwise orientation, so that forces that would cause the rod to rotate counterclockwise act in the positive direction. Compute the magnitudes of each torque:
• at the left end,
τ = + (50 N) (2.0 m) = 100 N•m
• at the right end,
τ = - (200 N) (5.0 m) = - 1000 N•m
• at a point a distance d to the right of the pivot point,
τ = + (300 N) d
Then
∑ τ = 100 N•m - 1000 N•m + (300 N) d = 0
⇒ (300 N) d = 1100 N•m
⇒ d ≈ 3.7 m
Answer:
60 N
Explanation:
This is just Newton's Second Law
F = m*a
F = ?
m = 12 kg
a = 5 m/^2
F = 5*12 = 60 Newtons
W = m.g = weight
g = Gme/Re**2 where G= universal gravitational constant , Re= radius of the earth
me= mass of the earth
therefore it weighs 16 times less