Answer:
16.732 N
Explanation:
Given:
q1 = 0.00047 C = 4.7 x 10^-4 C
q2 = 0.00089 C = 8.9 x 10^-4 C
d = 15 m
k = 9 x 10^9 N m^2 / C^2
To Find:
F = ?
Solution:
F = k x q1 x q2/d^2
F = 9 x 10^9 x 4.7 x 10^-4 x 8.9 x 10^-4 / 15 x 15
F = 9 x 4.7 x 8.9 x 10^9 x 10^-4 x 10^-4 / 225
F = 9 x 4.7 x 8.9 x 10^9 x 10^-8 / 225
F = 9 x 4.7 x 8.9 x 10 / 225
F = 418.3/25
F = 1673.2/100
Therefore, F = 16.732 N
PLZ MARK ME AS BRAINLIEST!!!
Answer:

Explanation:
The capacitance of a capacitor in terms of the dielectric constant, area of the plate and the distance separating the plate is given by:

Where A = Area of the plate
d = distance between the plates
dielectric constant
Case 1:
When a meta slab of thickness, a, is added between the plates of the parallel plate capacitor , the effective separation between the plates becomes d+a
Therefore the capacitance of the capacitor becomes:
.......................(1)
Case 2:
Introducing a dielectric with dielectric constant K between the plates, the capacitance of the capacitor becomes:
.........................(2)
Equating (1) and (2)

Answer:
Explanation:
Using Boyles law
Boyle's law states that, the volume of a given gas is inversely proportional to it's pressure, provided that temperature is constant
V ∝ 1 / P
V = k / P
VP = k
Then,
V_1 • P_1 = V_2 • P_2
So, if we want an increase in pressure that will decrease volume of mercury by 0.001%
Then, let initial volume be V_1 = V
New volume is V_2 = 0.001% of V
V_2 = 0.00001•V
Let initial pressure be P_1 = P
So,
Using the equation above
V_1•P_1 = V_2•P_2
V × P = 0.00001•V × P_2
Make P_2 subject of formula by dividing be 0.00001•V
P_2 = V × P / 0.00001 × V
Then,
P_2 = 100000 P
So, the new pressure has to be 10^5 times of the old pressure
Now, using bulk modulus
Bulk modulus of mercury=2.8x10¹⁰N/m²
bulk modulus = P/(-∆V/V)
-∆V = 0.001% of V
-∆V = 0.00001•V
-∆V = 10^-5•V
-∆V/V = 10^-5
Them,
Bulk modulus = P / (-∆V/V)
2.8 × 10^10 = P / 10^-5
P = 2.8 × 10^10 × 10^-5
P = 2.8 × 10^5 N/m²
<u>Answer
</u>
A. 1 and 2
<u>Explanation
</u>
At point 1 we have the highest potential energy and the kinetic energy is zero.
At 2 the potential energy is minimum and the kinetic energy is maximum.
The law of conservation of energy says that energy cannot be created nor destroyed. So, the change in P.E = Change in K.E.
P.E = height × gravity × mass. The height referred here is the perpendicular height. Gravity and mass are constant in this case.
From the diagram it can be seen clearly that the vertical height from 2 to 1 is much greater than from 4 to 3.
This shows that the change in P.E is greater between 1 and 2 and so is kinetic energy.