The concepts necessary to solve this problem are framed in the expression of string vibration frequency as well as the expression of the number of beats per second conditioned at two frequencies.
Mathematically, the frequency of the vibration of a string can be expressed as

Where,
L = Vibrating length string
T = Tension in the string
Linear mass density
At the same time we have the expression for the number of beats described as

Where
= First frequency
= Second frequency
From the previously given data we can directly observe that the frequency is directly proportional to the root of the mechanical Tension:

If we analyze carefully we can realize that when there is an increase in the frequency ratio on the tight string it increases. Therefore, the beats will be constituted under two waves; one from the first string and the second as a residue of the tight wave, as well


Replacing
for n and 202Hz for 



The frequency of the tightened is 205Hz
Answer
acceleration due to gravity on Jupiter's moon,g' = 1.81 m/s²
weight of water melon on earth, W = 40 N
acceleration due to gravity on earth, g = 9.8 m/s²
a) Mass on the earth surface
M = 4.08 Kg
b) Mass on the surface of Lo
Mass of an object remain same.
Hence, mass of object at the surface of Lo = 4.08 Kg.
c) Weight at the surface of Lo
W' = m g'
W' =4.08 x 1.81
W' = 7.38 N
<span>For hydrolysis to monosaccharides, one molecule of a disaccharide needs only one molecule of water.
C12H22O11 (sucrose) + H2O = C6H12O6 (glucose) + C6H12O6 (fructose)
Structurally, a disaccharide molecule may be viewed as a product formed by the condensation of two molecules of monosaccharides with the elimination of a water molecule. So, only one H2O molecule is needed for the reverse process.</span>