1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MariettaO [177]
3 years ago
10

Consider the video you just watched. Suppose we replace the original launcher with one that fires the ball upward at twice the s

peed. We make no other changes. How far behind the cart will the ball land, compared to the distance in the original experiment? a) half as far.
b) twice as far.
c) four times as far.
d) the same distance.
e) by a factor not listed above.
Physics
1 answer:
sveta [45]3 years ago
3 0

Answer:

b

Explanation:

Given:

- The ball is fired at a upward initial speed v_yi = 2*v

- The ball in first experiment was fired at upward initial speed v_yi = v

- The ball in first experiment was as at position behind cart = x_1

Find:

How far behind the cart will the ball land, compared to the distance in the original experiment?

Solution:

- Assuming the ball fired follows a projectile path. We will calculate the time it takes for the ball to reach maximum height y. Using first equation of motion:

                                      v_yf = v_yi + a*t

Where, a = -9.81 m/s^2 acceleration due to gravity

            v_y,f = 0 m/s max height for both cases:

For experiment 1 case:

                                     0 = v - 9.81*t_1

                                      t_1 = v / 9.81

For experiment 2 case:

                                     0 = 2*v - 9.81*t_2

                                      t_2 = 2*v / 9.81

The total time for the journey is twice that of t for both cases:

For experiment 1 case:

                                     T_1 = 2*t_1

                                     T_1 = 2*v / 9.81

For experiment 2 case:

                                     T_2 = 2*t_2

                                     T_2 = 4*v / 9.81

- Now use 2nd equation of motion in horizontal direction for both cases:

                                     x = v_xi*T

For experiment 1 case:

                                     x_1 = v_x1*T_1

                                    x_1 = v_x1*2*v / 9.81

For experiment 2 case:

                                     x_2 =  v_x2*T_2

                                    x_2 = v_x2*4*v / 9.81

- Now the x component of the velocity for each case depends on the horizontal speed of the cart just before launching the ball. Using conservation of momentum we see that both v_x2 = v_x1 after launch. Since the masses of both ball and cart remains the same.

- Hence; take ratio of two distances x_1 and x_2:

                        x_2 / x_2 = v_x2*4*v / 9.81 * 9.81 / v_x1*2*v

Simplify:

                        x_1 / x_2 = 2  

- Hence, the amount of distance traveled behind the cart in experiment 2 would be twice that of that in experiment 1.      

                                   

You might be interested in
Based on Archimedes' principle, we know that if an object displaces a given weight of water, then the object is being buoyed up
Virty [35]
True. If the amount displaced is more than the mass, it floats. If the amount is less than the mass, it will sink.
8 0
3 years ago
Read 2 more answers
Ted Williams hits a baseball with an initial velocity of 120 miles per hour (176 ft/s) at an angle of θ = 35 degrees to the hori
lys-0071 [83]

Answer: the maximum heigth of the stadium at ist back wall is 151.32 ft

Explanation:

1. use the position (x) equation in parobolic movement to find the time (t)

565 ft = [frac{176 ft}{1 s\\}[/tex] * cos (35°)  * t

t= 3.92 s

2. use the position (y) equation in parabolic movement to find de maximun heigth  the ball reaches at 565 ft from the home plate.

y= [[frac{176 ft}{1 s\\}[/tex] * sen (35°) * 3.92 s] - \frac{32.2 ft/s^{2} *3.92 s^{2}  }{2}

y= 148.32 ft

3. finally add the 3 ft that exist between the home plate and the ball

148.32 ft + 3 ft = 151.32

6 0
3 years ago
In some areas, farmers have installed windmills to generate electricity to run the farm. Some are generating a surplus of electr
Natalija [7]
The statement that best describes how the windmill technology benefits the environment is this: WINDMILLS DO NOT POLLUTE THE ENVIRONMENT.
Constructing a windmill involves harnessing the power of the wind to generate electricity. This type of electricity generation has no side  effects whatsoever. It is environmental friendly and does not pollute the environment. 
6 0
3 years ago
A horizontal clothesline is tied between 2 poles, 16 meters apart. When a mass of 3 kilograms is tied to the middle of the cloth
Alla [95]

Answer:

The magnitude of the tension on the ends of the clothesline is 41.85 N.

Explanation:

Given that,

Poles = 2

Distance = 16 m

Mass = 3 kg

Sags distance = 3 m

We need to calculate the angle made with vertical by mass

Using formula of angle

\tan\theta=\dfrac{8}{3}

\thta=\tan^{-1}\dfrac{8}{3}

\theta=69.44^{\circ}

We need to calculate the magnitude of the tension on the ends of the clothesline

Using formula of tension

mg=2T\cos\theta

Put the value into the formula

3\times9.8=2T\times\cos69.44

T=\dfrac{3\times9.8}{2\times\cos69.44}

T=41.85\ N  

Hence, The magnitude of the tension on the ends of the clothesline is 41.85 N.

4 0
3 years ago
Read 2 more answers
If 50 km thick crust having an average density of 3.0 g/cm3 has a surface elevation of 2.5 km above sea level, what would you pr
RUDIKE [14]

Answer:

To calculate the predicted surface elevation of a 50km thick crust above a surface of 2.5km we are given a density of 3 gram per centimeter cube.

The displacement of the material will be calculated by subtracting the surface elevation of 2.5 km from the 50 km thick crust. Therefore 50-25= 47.5 km.

Thus let the density of the material be Pm

50*3= 47.5*Pm

Therefore: Pm= (50*3)/47.5= 3.16gram per centimeter cube

Thus with an average density of 2.8gram per centimeter cube

50*2.8= (50-x)*3.16

(50-x)= (50*2.8)/3.16

50-x=44.3

x=50-44.3= 5.7

Explanation:

To calculate the predicted surface elevation of a 50km thick crust above a surface of 2.5km we are given a density of 3 gram per centimeter cube.

The displacement of the material will be calculated by subtracting the surface elevation of 2.5 km from the 50 km thick crust. Therefore 50-25= 47.5 km.

Thus let the density of the material be Pm

50*3= 47.5*Pm

Therefore: Pm= (50*3)/47.5= 3.16gram per centimeter cube

Thus with an average density of 2.8gram per centimeter cube

50*2.8= (50-x)*3.16

(50-x)= (50*2.8)/3.16

50-x=44.3

x=50-44.3= 5.7

5 0
3 years ago
Other questions:
  • An electron with a charge e and mass m is accelerated from rest for a time T by a uniform electric field that exerts a force F o
    7·1 answer
  • Distinguish between the key features of Charles's Law and
    7·1 answer
  • A skateboarder shoots off a ramp with a velocity of 5.1 m/s, directed at an angle of 55° above the horizontal. The end of the ra
    7·1 answer
  • Answer and I will give you brainiliest
    15·2 answers
  • If 2.0j of work is done in raising 180g apple, how far was it lifted?
    10·1 answer
  • A book is sitting on a table, completely still. What would happen if gravity suddenly stopped affecting the book? A. The book wo
    5·1 answer
  • Answer pls urgent pls​
    5·2 answers
  • I need Help with this physics question please !
    13·1 answer
  • A 0.5 kg object, initially at rest, is pulled to the right along a frictionless horizontal surface by a constant horizontal forc
    13·1 answer
  • If a force of 1250 N acts on an area of 25 metres squared, what will be the pressure acting on the surface? Show your working as
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!