Relatively hot objects emit visible light.
Some examples:
==> the wire coils in the toaster;
==> the spoon that you stuck in the flame on the stove;
==> the fine wire in the lightbulb when current goes through it.
VERY radioactive objects also do that. But if you're actually
standing there watching an object that's THAT radioactive,
then you're in big trouble.
Answer:
(ω₁ / ω₂) = 1.9079
Explanation:
Given
R₁ = 3.59 cm
R₂ = 7.22 cm
m₁ = m₂ = m
K₁ = K₂
We know that
K₁ = Kt₁ + Kr₁ = 0.5*m₁*v₁²+0.5*I₁*ω₁²
if
v₁ = ω₁*R₁
and
I₁ = (2/3)*m₁*R₁² = (2/3)*m*R₁²
∴ K₁ = 0.5*m*ω₁²*R₁²+0.5*(2/3)*m*R₁²*ω₁² <em>(I)</em>
then
K₂ = Kt₂ + Kr₂ = 0.5*m₂*v₂²+0.5*I₂*ω₂²
if
v₂ = ω₂*R₂
and
I₂ = 0.5*m₂*R₂² = 0.5*m*R₂²
∴ K₂ = 0.5*m*ω₂²*R₂²+0.5*(0.5*m*R₂²)*ω₂² <em>(II)</em>
<em>∵ </em>K₁ = K₂
⇒ 0.5*m*ω₁²*R₁²+0.5*(2/3)*m*R₁²*ω₁² = 0.5*m*ω₂²*R₂²+0.5*(0.5*m*R₂²)*ω₂²
⇒ ω₁²*R₁²+(2/3)*R₁²*ω₁² = ω₂²*R₂²+0.5*R₂²*ω₂²
⇒ (5/3)*ω₁²*R₁² = (3/2)*ω₂²*R₂²
⇒ (ω₁ / ω₂)² = (3/2)*R₂² / ((5/3)*R₁²)
⇒ (ω₁ / ω₂)² = (9/10)*(7.22/ 3.59)²
⇒ (ω₁ / ω₂) = (7.22/ 3.59)√(9/10)
⇒ (ω₁ / ω₂) = 1.9079

➢ 1. force = mass × <u>acceleration</u>
➢ 2. Since unit of weight = kg•m/s²
A > Is the correct answer :)